# model setting model = dict( type='FastRCNN', backbone=dict( type='ResNet3dSlowOnly', depth=50, pretrained=None, pretrained2d=False, lateral=False, num_stages=4, conv1_kernel=(1, 7, 7), conv1_stride_t=1, pool1_stride_t=1, spatial_strides=(1, 2, 2, 1)), roi_head=dict( type='AVARoIHead', bbox_roi_extractor=dict( type='SingleRoIExtractor3D', roi_layer_type='RoIAlign', output_size=8, with_temporal_pool=True), bbox_head=dict( type='BBoxHeadAVA', in_channels=2048, num_classes=81, multilabel=True, dropout_ratio=0.5)), train_cfg=dict( rcnn=dict( assigner=dict( type='MaxIoUAssignerAVA', pos_iou_thr=0.9, neg_iou_thr=0.9, min_pos_iou=0.9), sampler=dict( type='RandomSampler', num=32, pos_fraction=1, neg_pos_ub=-1, add_gt_as_proposals=True), pos_weight=1.0, debug=False)), test_cfg=dict(rcnn=dict(action_thr=0.002)))