# model settings model = dict( type='Recognizer3D', backbone=dict( type='ResNet3dSlowFast', pretrained=None, resample_rate=8, # tau speed_ratio=8, # alpha channel_ratio=8, # beta_inv slow_pathway=dict( type='resnet3d', depth=50, pretrained=None, lateral=True, conv1_kernel=(1, 7, 7), dilations=(1, 1, 1, 1), conv1_stride_t=1, pool1_stride_t=1, inflate=(0, 0, 1, 1), norm_eval=False), fast_pathway=dict( type='resnet3d', depth=50, pretrained=None, lateral=False, base_channels=8, conv1_kernel=(5, 7, 7), conv1_stride_t=1, pool1_stride_t=1, norm_eval=False)), cls_head=dict( type='SlowFastHead', in_channels=2304, # 2048+256 num_classes=400, spatial_type='avg', dropout_ratio=0.5), # model training and testing settings train_cfg=None, test_cfg=dict(average_clips='prob'))