Commit 71339f8d authored by unknown's avatar unknown
Browse files

修改readme文件

parent aa58d024
<div align="center"> # Spatial Temporal Graph Convolutional Networks for Skeleton-Based Action Recognition(STGCN)
<img src="https://github.com/open-mmlab/mmaction2/raw/master/resources/mmaction2_logo.png" width="600"/>
<div>&nbsp;</div>
<div align="center">
<b><font size="5">OpenMMLab website</font></b>
<sup>
<a href="https://openmmlab.com">
<i><font size="4">HOT</font></i>
</a>
</sup>
&nbsp;&nbsp;&nbsp;&nbsp;
<b><font size="5">OpenMMLab platform</font></b>
<sup>
<a href="https://platform.openmmlab.com">
<i><font size="4">TRY IT OUT</font></i>
</a>
</sup>
</div>
[![Documentation](https://readthedocs.org/projects/mmaction2/badge/?version=latest)](https://mmaction2.readthedocs.io/en/latest/) ## 模型介绍
[![actions](https://github.com/open-mmlab/mmaction2/workflows/build/badge.svg)](https://github.com/open-mmlab/mmaction2/actions) 人体骨骼的动力学为人类动作识别传递了重要信息。传统的骨架建模方法通常依赖于手工制作的部分或遍历规则,因此导致表达能力有限,难以泛化。在这项工作中,我们提出了一种新的动态骨架模型,称为时空图卷积网络(ST-GCN),它通过从数据中自动学习空间和时间模式,超越了以前方法的限制。该公式不仅具有更大的表达能力,而且具有更强的泛化能力。在Kinetics和NTU-RGBD这两个大型数据集上,它比主流方法有了实质性的改进。
[![codecov](https://codecov.io/gh/open-mmlab/mmaction2/branch/master/graph/badge.svg)](https://codecov.io/gh/open-mmlab/mmaction2) ## 模型结构
[![PyPI](https://img.shields.io/pypi/v/mmaction2)](https://pypi.org/project/mmaction2/) ST-GCN模型由九层时空图卷积组成。前三层输出64通道数,中间三层输出128通道,最后三层输出256层通道数。一共有9个时间卷积核,在每一个ST-GCN使用残差链接,使用dropout进行特征正则化处理,将一半的神经元进行dropout处理。第4、7层的时间卷积层设置为poling层。最后将输出的256个通道数的输出进行全局pooling,并由softmax进行分类。
[![LICENSE](https://img.shields.io/github/license/open-mmlab/mmaction2.svg)](https://github.com/open-mmlab/mmaction2/blob/master/LICENSE)
[![Average time to resolve an issue](https://isitmaintained.com/badge/resolution/open-mmlab/mmaction2.svg)](https://github.com/open-mmlab/mmaction2/issues)
[![Percentage of issues still open](https://isitmaintained.com/badge/open/open-mmlab/mmaction2.svg)](https://github.com/open-mmlab/mmaction2/issues)
[📘Documentation](https://mmaction2.readthedocs.io/en/latest/) | ![img](https://user-images.githubusercontent.com/34324155/142995893-d6618728-072c-46e1-b276-9b88cf21a01c.png)
[🛠️Installation](https://mmaction2.readthedocs.io/en/latest/install.html) |
[👀Model Zoo](https://mmaction2.readthedocs.io/en/latest/modelzoo.html) |
[🆕Update News](https://mmaction2.readthedocs.io/en/latest/changelog.html) |
[🚀Ongoing Projects](https://github.com/open-mmlab/mmaction2/projects) |
[🤔Reporting Issues](https://github.com/open-mmlab/mmaction2/issues/new/choose)
</div> ## 数据集
有关数据集的基本信息,请参阅官方网站(https://www.deepmind.com/open-source/kinetics)。脚本可用于准备kinetics400, kinetics600, kinetics700.。要准备不同版本的动力学,您需要将以下示例中的${DATASET}替换为特定的数据集名称。数据集名称的选择是kinetics400、kinetics600和kinetics700。在开始之前,请确保目录位于$MMACTION2/tools/data/${DATASET}/。在本测试中使用的是kinetics400数据集。
English | [简体中文](/README_zh-CN.md) 数据集处理方法请参考tools/data/kinetics自行处理,也可通过下面链接下载使用。
## Introduction 链接:https://pan.baidu.com/s/1LWMCki18G15Pkvjl9-gwgw?pwd=xlpi 提取码:xlpi
MMAction2 is an open-source toolbox for video understanding based on PyTorch. ## STGCN训练
It is a part of the [OpenMMLab](http://openmmlab.org/) project. ### 环境配置
提供[光源](https://www.sourcefind.cn/#/service-details)拉取的训练以及推理的docker镜像:
* 训练镜像:docker pull image.sourcefind.cn:5000/dcu/admin/base/pytorch:1.10.0-centos7.6-dtk-22.10.1-py37-latest
The master branch works with **PyTorch 1.5+**. ```
mmaction2 安装:
cd mmaction2-0.24.1
pip3 install -e .
```
### 训练
训练命令:
<div align="center"> export HIP_VISIBLE_DEVICES=0
<div style="float:left;margin-right:10px;"> export ROCBLAS_ATOMICS_MOD=1
<img src="https://github.com/open-mmlab/mmaction2/raw/master/resources/mmaction2_overview.gif" width="380px"><br> export MIOPEN_FIND_MODE=1
<p style="font-size:1.5vw;">Action Recognition Results on Kinetics-400</p> python3 tools/train.py configs/skeleton/stgcn/stgcn_80e_ntu60_xsub_keypoint.py --seed 0 --deterministic --validate --gpu-ids 0
</div>
<div style="float:right;margin-right:0px;">
<img src="https://user-images.githubusercontent.com/34324155/123989146-2ecae680-d9fb-11eb-916b-b9db5563a9e5.gif" width="380px"><br>
<p style="font-size:1.5vw;">Skeleton-base Action Recognition Results on NTU-RGB+D-120</p>
</div>
</div>
<div align="center">
<img src="https://user-images.githubusercontent.com/30782254/155710881-bb26863e-fcb4-458e-b0c4-33cd79f96901.gif" width="580px"/><br>
<p style="font-size:1.5vw;">Skeleton-based Spatio-Temporal Action Detection and Action Recognition Results on Kinetics-400</p>
</div>
<div align="center">
<img src="https://github.com/open-mmlab/mmaction2/raw/master/resources/spatio-temporal-det.gif" width="800px"/><br>
<p style="font-size:1.5vw;">Spatio-Temporal Action Detection Results on AVA-2.1</p>
</div>
## Major Features ## 性能和准确率数据
测试数据使用的是[kinetics400](https://github.com/sirius-ai/LPRNet_Pytorch/tree/master/data/test),使用的加速卡是DCU Z100L。
- **Modular design**: We decompose a video understanding framework into different components. One can easily construct a customized video understanding framework by combining different modules. 根据模型情况填写表格:
| 卡数 | 性能 | Top5_acc |
| :------: | :------: |:------: |
| 1 | 74.77 samples/s(bs=16) | 1.0000 |
- **Support four major video understanding tasks**: MMAction2 implements various algorithms for multiple video understanding tasks, including action recognition, action localization, spatio-temporal action detection, and skeleton-based action detection. We support **27** different algorithms and **20** different datasets for the four major tasks. ### 参考
- **Well tested and documented**: We provide detailed documentation and API reference, as well as unit tests. https://github.com/open-mmlab/mmdetection
## What's New
- (2022-03-04) We support **Multigrid** on Kinetics400, achieve 76.07% Top-1 accuracy and accelerate training speed.
- (2021-11-24) We support **2s-AGCN** on NTU60 XSub, achieve 86.06% Top-1 accuracy on joint stream and 86.89% Top-1 accuracy on bone stream respectively.
- (2021-10-29) We provide a demo for skeleton-based and rgb-based spatio-temporal detection and action recognition (demo/demo_video_structuralize.py).
- (2021-10-26) We train and test **ST-GCN** on NTU60 with 3D keypoint annotations, achieve 84.61% Top-1 accuracy (higher than 81.5% in the [paper](https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/viewPaper/17135)).
- (2021-10-25) We provide a script(tools/data/skeleton/gen_ntu_rgbd_raw.py) to convert the NTU60 and NTU120 3D raw skeleton data to our format.
- (2021-10-25) We provide a [guide](https://github.com/open-mmlab/mmaction2/blob/master/configs/skeleton/posec3d/custom_dataset_training.md) on how to train PoseC3D with custom datasets, [bit-scientist](https://github.com/bit-scientist) authored this PR!
- (2021-10-16) We support **PoseC3D** on UCF101 and HMDB51, achieves 87.0% and 69.3% Top-1 accuracy with 2D skeletons only. Pre-extracted 2D skeletons are also available.
**Release**: v0.24.0 was released in 05/05/2022. Please refer to [changelog.md](docs/changelog.md) for details and release history.
## Installation
MMAction2 depends on [PyTorch](https://pytorch.org/), [MMCV](https://github.com/open-mmlab/mmcv), [MMDetection](https://github.com/open-mmlab/mmdetection) (optional), and [MMPose](https://github.com/open-mmlab/mmdetection)(optional).
Below are quick steps for installation.
Please refer to [install.md](docs/install.md) for more detailed instruction.
```shell
conda create -n open-mmlab python=3.8 pytorch=1.10 cudatoolkit=11.3 torchvision -c pytorch -y
conda activate open-mmlab
pip3 install openmim
mim install mmcv-full
mim install mmdet # optional
mim install mmpose # optional
git clone https://github.com/open-mmlab/mmaction2.git
cd mmaction2
pip3 install -e .
```
## Get Started
Please see [getting_started.md](docs/getting_started.md) for the basic usage of MMAction2.
There are also tutorials:
- [learn about configs](docs/tutorials/1_config.md)
- [finetuning models](docs/tutorials/2_finetune.md)
- [adding new dataset](docs/tutorials/3_new_dataset.md)
- [designing data pipeline](docs/tutorials/4_data_pipeline.md)
- [adding new modules](docs/tutorials/5_new_modules.md)
- [exporting model to onnx](docs/tutorials/6_export_model.md)
- [customizing runtime settings](docs/tutorials/7_customize_runtime.md)
A Colab tutorial is also provided. You may preview the notebook [here](demo/mmaction2_tutorial.ipynb) or directly [run](https://colab.research.google.com/github/open-mmlab/mmaction2/blob/master/demo/mmaction2_tutorial.ipynb) on Colab.
## Supported Methods
<table style="margin-left:auto;margin-right:auto;font-size:1.3vw;padding:3px 5px;text-align:center;vertical-align:center;">
<tr>
<td colspan="5" style="font-weight:bold;">Action Recognition</td>
</tr>
<tr>
<td><a href="https://github.com/open-mmlab/mmaction2/blob/master/configs/recognition/c3d/README.md">C3D</a> (CVPR'2014)</td>
<td><a href="https://github.com/open-mmlab/mmaction2/blob/master/configs/recognition/tsn/README.md">TSN</a> (ECCV'2016)</td>
<td><a href="https://github.com/open-mmlab/mmaction2/blob/master/configs/recognition/i3d/README.md">I3D</a> (CVPR'2017)</td>
<td><a href="https://github.com/open-mmlab/mmaction2/blob/master/configs/recognition/i3d/README.md">I3D Non-Local</a> (CVPR'2018)</td>
<td><a href="https://github.com/open-mmlab/mmaction2/blob/master/configs/recognition/r2plus1d/README.md">R(2+1)D</a> (CVPR'2018)</td>
</tr>
<tr>
<td><a href="https://github.com/open-mmlab/mmaction2/blob/master/configs/recognition/trn/README.md">TRN</a> (ECCV'2018)</td>
<td><a href="https://github.com/open-mmlab/mmaction2/blob/master/configs/recognition/tsm/README.md">TSM</a> (ICCV'2019)</td>
<td><a href="https://github.com/open-mmlab/mmaction2/blob/master/configs/recognition/tsm/README.md">TSM Non-Local</a> (ICCV'2019)</td>
<td><a href="https://github.com/open-mmlab/mmaction2/blob/master/configs/recognition/slowonly/README.md">SlowOnly</a> (ICCV'2019)</td>
<td><a href="https://github.com/open-mmlab/mmaction2/blob/master/configs/recognition/slowfast/README.md">SlowFast</a> (ICCV'2019)</td>
</tr>
<tr>
<td><a href="https://github.com/open-mmlab/mmaction2/blob/master/configs/recognition/csn/README.md">CSN</a> (ICCV'2019)</td>
<td><a href="https://github.com/open-mmlab/mmaction2/blob/master/configs/recognition/tin/README.md">TIN</a> (AAAI'2020)</td>
<td><a href="https://github.com/open-mmlab/mmaction2/blob/master/configs/recognition/tpn/README.md">TPN</a> (CVPR'2020)</td>
<td><a href="https://github.com/open-mmlab/mmaction2/blob/master/configs/recognition/x3d/README.md">X3D</a> (CVPR'2020)</td>
<td><a href="https://github.com/open-mmlab/mmaction2/blob/master/configs/recognition/omnisource/README.md">OmniSource</a> (ECCV'2020)</td>
</tr>
<tr>
<td><a href="https://github.com/open-mmlab/mmaction2/blob/master/configs/recognition_audio/resnet/README.md">MultiModality: Audio</a> (ArXiv'2020)</td>
<td><a href="https://github.com/open-mmlab/mmaction2/blob/master/configs/recognition/tanet/README.md">TANet</a> (ArXiv'2020)</td>
<td><a href="https://github.com/open-mmlab/mmaction2/blob/master/configs/recognition/timesformer/README.md">TimeSformer</a> (ICML'2021)</td>
<td></td>
<td></td>
</tr>
<tr>
<td colspan="5" style="font-weight:bold;">Action Localization</td>
</tr>
<tr>
<td><a href="https://github.com/open-mmlab/mmaction2/blob/master/configs/localization/ssn/README.md">SSN</a> (ICCV'2017)</td>
<td><a href="https://github.com/open-mmlab/mmaction2/blob/master/configs/localization/bsn/README.md">BSN</a> (ECCV'2018)</td>
<td><a href="https://github.com/open-mmlab/mmaction2/blob/master/configs/localization/bmn/README.md">BMN</a> (ICCV'2019)</td>
<td></td>
<td></td>
</tr>
<tr>
<td colspan="5" style="font-weight:bold;">Spatio-Temporal Action Detection</td>
</tr>
<tr>
<td><a href="https://github.com/open-mmlab/mmaction2/blob/master/configs/detection/acrn/README.md">ACRN</a> (ECCV'2018)</td>
<td><a href="https://github.com/open-mmlab/mmaction2/blob/master/configs/detection/ava/README.md">SlowOnly+Fast R-CNN</a> (ICCV'2019)</td>
<td><a href="https://github.com/open-mmlab/mmaction2/blob/master/configs/detection/ava/README.md">SlowFast+Fast R-CNN</a> (ICCV'2019)</td>
<td><a href="https://github.com/open-mmlab/mmaction2/blob/master/configs/detection/lfb/README.md">LFB</a> (CVPR'2019)</td>
<td></td>
</tr>
<tr>
<td colspan="5" style="font-weight:bold;">Skeleton-based Action Recognition</td>
</tr>
<tr>
<td><a href="https://github.com/open-mmlab/mmaction2/blob/master/configs/skeleton/stgcn/README.md">ST-GCN</a> (AAAI'2018)</td>
<td><a href="https://github.com/open-mmlab/mmaction2/blob/master/configs/skeleton/2s-agcn/README.md">2s-AGCN</a> (CVPR'2019)</td>
<td><a href="https://github.com/open-mmlab/mmaction2/blob/master/configs/skeleton/posec3d/README.md">PoseC3D</a> (ArXiv'2021)</td>
<td></td>
<td></td>
</tr>
</table>
Results and models are available in the *README.md* of each method's config directory.
A summary can be found on the [**model zoo**](https://mmaction2.readthedocs.io/en/latest/recognition_models.html) page.
We will keep up with the latest progress of the community and support more popular algorithms and frameworks.
If you have any feature requests, please feel free to leave a comment in [Issues](https://github.com/open-mmlab/mmaction2/issues/19).
## Supported Datasets
<table style="margin-left:auto;margin-right:auto;font-size:1.3vw;padding:3px 5px;text-align:center;vertical-align:center;">
<tr>
<td colspan="4" style="font-weight:bold;">Action Recognition</td>
</tr>
<tr>
<td><a href="https://github.com/open-mmlab/mmaction2/blob/master/tools/data/hmdb51/README.md">HMDB51</a> (<a href="https://serre-lab.clps.brown.edu/resource/hmdb-a-large-human-motion-database/">Homepage</a>) (ICCV'2011)</td>
<td><a href="https://github.com/open-mmlab/mmaction2/blob/master/tools/data/ucf101/README.md">UCF101</a> (<a href="https://www.crcv.ucf.edu/research/data-sets/ucf101/">Homepage</a>) (CRCV-IR-12-01)</td>
<td><a href="https://github.com/open-mmlab/mmaction2/blob/master/tools/data/activitynet/README.md">ActivityNet</a> (<a href="http://activity-net.org/">Homepage</a>) (CVPR'2015)</td>
<td><a href="https://github.com/open-mmlab/mmaction2/blob/master/tools/data/kinetics/README.md">Kinetics-[400/600/700]</a> (<a href="https://deepmind.com/research/open-source/kinetics/">Homepage</a>) (CVPR'2017)</td>
</tr>
<tr>
<td><a href="https://github.com/open-mmlab/mmaction2/blob/master/tools/data/sthv1/README.md">SthV1</a> (<a href="https://20bn.com/datasets/something-something/v1/">Homepage</a>) (ICCV'2017)</td>
<td><a href="https://github.com/open-mmlab/mmaction2/blob/master/tools/data/sthv2/README.md">SthV2</a> (<a href="https://20bn.com/datasets/something-something/">Homepage</a>) (ICCV'2017)</td>
<td><a href="https://github.com/open-mmlab/mmaction2/blob/master/tools/data/diving48/README.md">Diving48</a> (<a href="http://www.svcl.ucsd.edu/projects/resound/dataset.html">Homepage</a>) (ECCV'2018)</td>
<td><a href="https://github.com/open-mmlab/mmaction2/blob/master/tools/data/jester/README.md">Jester</a> (<a href="https://20bn.com/datasets/jester/v1">Homepage</a>) (ICCV'2019)</td>
</tr>
<tr>
<td><a href="https://github.com/open-mmlab/mmaction2/blob/master/tools/data/mit/README.md">Moments in Time</a> (<a href="http://moments.csail.mit.edu/">Homepage</a>) (TPAMI'2019)</td>
<td><a href="https://github.com/open-mmlab/mmaction2/blob/master/tools/data/mmit/README.md">Multi-Moments in Time</a> (<a href="http://moments.csail.mit.edu/challenge_iccv_2019.html">Homepage</a>) (ArXiv'2019)</td>
<td><a href="https://github.com/open-mmlab/mmaction2/blob/master/tools/data/hvu/README.md">HVU</a> (<a href="https://github.com/holistic-video-understanding/HVU-Dataset">Homepage</a>) (ECCV'2020)</td>
<td><a href="https://github.com/open-mmlab/mmaction2/blob/master/tools/data/omnisource/README.md">OmniSource</a> (<a href="https://kennymckormick.github.io/omnisource/">Homepage</a>) (ECCV'2020)</td>
</tr>
<tr>
<td><a href="https://github.com/open-mmlab/mmaction2/blob/master/tools/data/gym/README.md">FineGYM</a> (<a href="https://sdolivia.github.io/FineGym/">Homepage</a>) (CVPR'2020)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td colspan="4" style="font-weight:bold;">Action Localization</td>
</tr>
<tr>
<td><a href="https://github.com/open-mmlab/mmaction2/blob/master/tools/data/thumos14/README.md">THUMOS14</a> (<a href="https://www.crcv.ucf.edu/THUMOS14/download.html">Homepage</a>) (THUMOS Challenge 2014)</td>
<td><a href="https://github.com/open-mmlab/mmaction2/blob/master/tools/data/activitynet/README.md">ActivityNet</a> (<a href="http://activity-net.org/">Homepage</a>) (CVPR'2015)</td>
<td></td>
<td></td>
</tr>
<tr>
<td colspan="4" style="font-weight:bold;">Spatio-Temporal Action Detection</td>
</tr>
<tr>
<td><a href="https://github.com/open-mmlab/mmaction2/blob/master/tools/data/ucf101_24/README.md">UCF101-24*</a> (<a href="http://www.thumos.info/download.html">Homepage</a>) (CRCV-IR-12-01)</td>
<td><a href="https://github.com/open-mmlab/mmaction2/blob/master/tools/data/jhmdb/README.md">JHMDB*</a> (<a href="http://jhmdb.is.tue.mpg.de/">Homepage</a>) (ICCV'2015)</td>
<td><a href="https://github.com/open-mmlab/mmaction2/blob/master/tools/data/ava/README.md">AVA</a> (<a href="https://research.google.com/ava/index.html">Homepage</a>) (CVPR'2018)</td>
<td></td>
</tr>
<tr>
<td colspan="4" style="font-weight:bold;">Skeleton-based Action Recognition</td>
</tr>
<tr>
<td><a href="https://github.com/open-mmlab/mmaction2/blob/master/tools/data/skeleton/README.md">PoseC3D-FineGYM</a> (<a href="https://kennymckormick.github.io/posec3d/">Homepage</a>) (ArXiv'2021)</td>
<td><a href="https://github.com/open-mmlab/mmaction2/blob/master/tools/data/skeleton/README.md">PoseC3D-NTURGB+D</a> (<a href="https://kennymckormick.github.io/posec3d/">Homepage</a>) (ArXiv'2021)</td>
<td><a href="https://github.com/open-mmlab/mmaction2/blob/master/tools/data/skeleton/README.md">PoseC3D-UCF101</a> (<a href="https://kennymckormick.github.io/posec3d/">Homepage</a>) (ArXiv'2021)</td>
<td><a href="https://github.com/open-mmlab/mmaction2/blob/master/tools/data/skeleton/README.md">PoseC3D-HMDB51</a> (<a href="https://kennymckormick.github.io/posec3d/">Homepage</a>) (ArXiv'2021)</td>
</tr>
</table>
Datasets marked with * are not fully supported yet, but related dataset preparation steps are provided. A summary can be found on the [**Supported Datasets**](https://mmaction2.readthedocs.io/en/latest/supported_datasets.html) page.
## Benchmark
To demonstrate the efficacy and efficiency of our framework, we compare MMAction2 with some other popular frameworks and official releases in terms of speed. Details can be found in [benchmark](docs/benchmark.md).
## Data Preparation
Please refer to [data_preparation.md](docs/data_preparation.md) for a general knowledge of data preparation.
The supported datasets are listed in [supported_datasets.md](docs/supported_datasets.md)
## FAQ
Please refer to [FAQ](docs/faq.md) for frequently asked questions.
## Projects built on MMAction2
Currently, there are many research works and projects built on MMAction2 by users from community, such as:
- Video Swin Transformer. [\[paper\]](https://arxiv.org/abs/2106.13230)[\[github\]](https://github.com/SwinTransformer/Video-Swin-Transformer)
- Evidential Deep Learning for Open Set Action Recognition, ICCV 2021 **Oral**. [\[paper\]](https://arxiv.org/abs/2107.10161)[\[github\]](https://github.com/Cogito2012/DEAR)
- Rethinking Self-supervised Correspondence Learning: A Video Frame-level Similarity Perspective, ICCV 2021 **Oral**. [\[paper\]](https://arxiv.org/abs/2103.17263)[\[github\]](https://github.com/xvjiarui/VFS)
etc., check [projects.md](docs/projects.md) to see all related projects.
## Contributing
We appreciate all contributions to improve MMAction2. Please refer to [CONTRIBUTING.md](https://github.com/open-mmlab/mmcv/blob/master/CONTRIBUTING.md) in MMCV for more details about the contributing guideline.
## Acknowledgement
MMAction2 is an open-source project that is contributed by researchers and engineers from various colleges and companies.
We appreciate all the contributors who implement their methods or add new features and users who give valuable feedback.
We wish that the toolbox and benchmark could serve the growing research community by providing a flexible toolkit to reimplement existing methods and develop their new models.
## Citation
If you find this project useful in your research, please consider cite:
```BibTeX
@misc{2020mmaction2,
title={OpenMMLab's Next Generation Video Understanding Toolbox and Benchmark},
author={MMAction2 Contributors},
howpublished = {\url{https://github.com/open-mmlab/mmaction2}},
year={2020}
}
```
## License
This project is released under the [Apache 2.0 license](LICENSE).
## Projects in OpenMMLab
- [MIM](https://github.com/open-mmlab/mim): MIM installs OpenMMLab packages.
- [MMClassification](https://github.com/open-mmlab/mmclassification): OpenMMLab image classification toolbox and benchmark.
- [MMDetection](https://github.com/open-mmlab/mmdetection): OpenMMLab detection toolbox and benchmark.
- [MMDetection3D](https://github.com/open-mmlab/mmdetection3d): OpenMMLab's next-generation platform for general 3D object detection.
- [MMRotate](https://github.com/open-mmlab/mmrotate): OpenMMLab rotated object detection toolbox and benchmark.
- [MMSegmentation](https://github.com/open-mmlab/mmsegmentation): OpenMMLab semantic segmentation toolbox and benchmark.
- [MMOCR](https://github.com/open-mmlab/mmocr): OpenMMLab text detection, recognition, and understanding toolbox.
- [MMPose](https://github.com/open-mmlab/mmpose): OpenMMLab pose estimation toolbox and benchmark.
- [MMHuman3D](https://github.com/open-mmlab/mmhuman3d): OpenMMLab 3D human parametric model toolbox and benchmark.
- [MMSelfSup](https://github.com/open-mmlab/mmselfsup): OpenMMLab self-supervised learning toolbox and benchmark.
- [MMRazor](https://github.com/open-mmlab/mmrazor): OpenMMLab model compression toolbox and benchmark.
- [MMFewShot](https://github.com/open-mmlab/mmfewshot): OpenMMLab fewshot learning toolbox and benchmark.
- [MMAction2](https://github.com/open-mmlab/mmaction2): OpenMMLab's next-generation action understanding toolbox and benchmark.
- [MMTracking](https://github.com/open-mmlab/mmtracking): OpenMMLab video perception toolbox and benchmark.
- [MMFlow](https://github.com/open-mmlab/mmflow): OpenMMLab optical flow toolbox and benchmark.
- [MMEditing](https://github.com/open-mmlab/mmediting): OpenMMLab image and video editing toolbox.
- [MMGeneration](https://github.com/open-mmlab/mmgeneration): OpenMMLab image and video generative models toolbox.
- [MMDeploy](https://github.com/open-mmlab/mmdeploy): OpenMMLab model deployment framework.
<div align="center">
<img src="https://github.com/open-mmlab/mmaction2/raw/master/resources/mmaction2_logo.png" width="600"/>
<div>&nbsp;</div>
<div align="center">
<b><font size="5">OpenMMLab website</font></b>
<sup>
<a href="https://openmmlab.com">
<i><font size="4">HOT</font></i>
</a>
</sup>
&nbsp;&nbsp;&nbsp;&nbsp;
<b><font size="5">OpenMMLab platform</font></b>
<sup>
<a href="https://platform.openmmlab.com">
<i><font size="4">TRY IT OUT</font></i>
</a>
</sup>
</div>
[![Documentation](https://readthedocs.org/projects/mmaction2/badge/?version=latest)](https://mmaction2.readthedocs.io/en/latest/)
[![actions](https://github.com/open-mmlab/mmaction2/workflows/build/badge.svg)](https://github.com/open-mmlab/mmaction2/actions)
[![codecov](https://codecov.io/gh/open-mmlab/mmaction2/branch/master/graph/badge.svg)](https://codecov.io/gh/open-mmlab/mmaction2)
[![PyPI](https://img.shields.io/pypi/v/mmaction2)](https://pypi.org/project/mmaction2/)
[![LICENSE](https://img.shields.io/github/license/open-mmlab/mmaction2.svg)](https://github.com/open-mmlab/mmaction2/blob/master/LICENSE)
[![Average time to resolve an issue](https://isitmaintained.com/badge/resolution/open-mmlab/mmaction2.svg)](https://github.com/open-mmlab/mmaction2/issues)
[![Percentage of issues still open](https://isitmaintained.com/badge/open/open-mmlab/mmaction2.svg)](https://github.com/open-mmlab/mmaction2/issues)
[📘Documentation](https://mmaction2.readthedocs.io/en/latest/) |
[🛠️Installation](https://mmaction2.readthedocs.io/en/latest/install.html) |
[👀Model Zoo](https://mmaction2.readthedocs.io/en/latest/modelzoo.html) |
[🆕Update News](https://mmaction2.readthedocs.io/en/latest/changelog.html) |
[🚀Ongoing Projects](https://github.com/open-mmlab/mmaction2/projects) |
[🤔Reporting Issues](https://github.com/open-mmlab/mmaction2/issues/new/choose)
</div>
English | [简体中文](/README_zh-CN.md)
## Introduction
MMAction2 is an open-source toolbox for video understanding based on PyTorch.
It is a part of the [OpenMMLab](http://openmmlab.org/) project.
The master branch works with **PyTorch 1.5+**.
<div align="center">
<div style="float:left;margin-right:10px;">
<img src="https://github.com/open-mmlab/mmaction2/raw/master/resources/mmaction2_overview.gif" width="380px"><br>
<p style="font-size:1.5vw;">Action Recognition Results on Kinetics-400</p>
</div>
<div style="float:right;margin-right:0px;">
<img src="https://user-images.githubusercontent.com/34324155/123989146-2ecae680-d9fb-11eb-916b-b9db5563a9e5.gif" width="380px"><br>
<p style="font-size:1.5vw;">Skeleton-base Action Recognition Results on NTU-RGB+D-120</p>
</div>
</div>
<div align="center">
<img src="https://user-images.githubusercontent.com/30782254/155710881-bb26863e-fcb4-458e-b0c4-33cd79f96901.gif" width="580px"/><br>
<p style="font-size:1.5vw;">Skeleton-based Spatio-Temporal Action Detection and Action Recognition Results on Kinetics-400</p>
</div>
<div align="center">
<img src="https://github.com/open-mmlab/mmaction2/raw/master/resources/spatio-temporal-det.gif" width="800px"/><br>
<p style="font-size:1.5vw;">Spatio-Temporal Action Detection Results on AVA-2.1</p>
</div>
## Major Features
- **Modular design**: We decompose a video understanding framework into different components. One can easily construct a customized video understanding framework by combining different modules.
- **Support four major video understanding tasks**: MMAction2 implements various algorithms for multiple video understanding tasks, including action recognition, action localization, spatio-temporal action detection, and skeleton-based action detection. We support **27** different algorithms and **20** different datasets for the four major tasks.
- **Well tested and documented**: We provide detailed documentation and API reference, as well as unit tests.
## What's New
- (2022-03-04) We support **Multigrid** on Kinetics400, achieve 76.07% Top-1 accuracy and accelerate training speed.
- (2021-11-24) We support **2s-AGCN** on NTU60 XSub, achieve 86.06% Top-1 accuracy on joint stream and 86.89% Top-1 accuracy on bone stream respectively.
- (2021-10-29) We provide a demo for skeleton-based and rgb-based spatio-temporal detection and action recognition (demo/demo_video_structuralize.py).
- (2021-10-26) We train and test **ST-GCN** on NTU60 with 3D keypoint annotations, achieve 84.61% Top-1 accuracy (higher than 81.5% in the [paper](https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/viewPaper/17135)).
- (2021-10-25) We provide a script(tools/data/skeleton/gen_ntu_rgbd_raw.py) to convert the NTU60 and NTU120 3D raw skeleton data to our format.
- (2021-10-25) We provide a [guide](https://github.com/open-mmlab/mmaction2/blob/master/configs/skeleton/posec3d/custom_dataset_training.md) on how to train PoseC3D with custom datasets, [bit-scientist](https://github.com/bit-scientist) authored this PR!
- (2021-10-16) We support **PoseC3D** on UCF101 and HMDB51, achieves 87.0% and 69.3% Top-1 accuracy with 2D skeletons only. Pre-extracted 2D skeletons are also available.
**Release**: v0.24.0 was released in 05/05/2022. Please refer to [changelog.md](docs/changelog.md) for details and release history.
## Installation
MMAction2 depends on [PyTorch](https://pytorch.org/), [MMCV](https://github.com/open-mmlab/mmcv), [MMDetection](https://github.com/open-mmlab/mmdetection) (optional), and [MMPose](https://github.com/open-mmlab/mmdetection)(optional).
Below are quick steps for installation.
Please refer to [install.md](docs/install.md) for more detailed instruction.
```shell
conda create -n open-mmlab python=3.8 pytorch=1.10 cudatoolkit=11.3 torchvision -c pytorch -y
conda activate open-mmlab
pip3 install openmim
mim install mmcv-full
mim install mmdet # optional
mim install mmpose # optional
git clone https://github.com/open-mmlab/mmaction2.git
cd mmaction2
pip3 install -e .
```
## Get Started
Please see [getting_started.md](docs/getting_started.md) for the basic usage of MMAction2.
There are also tutorials:
- [learn about configs](docs/tutorials/1_config.md)
- [finetuning models](docs/tutorials/2_finetune.md)
- [adding new dataset](docs/tutorials/3_new_dataset.md)
- [designing data pipeline](docs/tutorials/4_data_pipeline.md)
- [adding new modules](docs/tutorials/5_new_modules.md)
- [exporting model to onnx](docs/tutorials/6_export_model.md)
- [customizing runtime settings](docs/tutorials/7_customize_runtime.md)
A Colab tutorial is also provided. You may preview the notebook [here](demo/mmaction2_tutorial.ipynb) or directly [run](https://colab.research.google.com/github/open-mmlab/mmaction2/blob/master/demo/mmaction2_tutorial.ipynb) on Colab.
## Supported Methods
<table style="margin-left:auto;margin-right:auto;font-size:1.3vw;padding:3px 5px;text-align:center;vertical-align:center;">
<tr>
<td colspan="5" style="font-weight:bold;">Action Recognition</td>
</tr>
<tr>
<td><a href="https://github.com/open-mmlab/mmaction2/blob/master/configs/recognition/c3d/README.md">C3D</a> (CVPR'2014)</td>
<td><a href="https://github.com/open-mmlab/mmaction2/blob/master/configs/recognition/tsn/README.md">TSN</a> (ECCV'2016)</td>
<td><a href="https://github.com/open-mmlab/mmaction2/blob/master/configs/recognition/i3d/README.md">I3D</a> (CVPR'2017)</td>
<td><a href="https://github.com/open-mmlab/mmaction2/blob/master/configs/recognition/i3d/README.md">I3D Non-Local</a> (CVPR'2018)</td>
<td><a href="https://github.com/open-mmlab/mmaction2/blob/master/configs/recognition/r2plus1d/README.md">R(2+1)D</a> (CVPR'2018)</td>
</tr>
<tr>
<td><a href="https://github.com/open-mmlab/mmaction2/blob/master/configs/recognition/trn/README.md">TRN</a> (ECCV'2018)</td>
<td><a href="https://github.com/open-mmlab/mmaction2/blob/master/configs/recognition/tsm/README.md">TSM</a> (ICCV'2019)</td>
<td><a href="https://github.com/open-mmlab/mmaction2/blob/master/configs/recognition/tsm/README.md">TSM Non-Local</a> (ICCV'2019)</td>
<td><a href="https://github.com/open-mmlab/mmaction2/blob/master/configs/recognition/slowonly/README.md">SlowOnly</a> (ICCV'2019)</td>
<td><a href="https://github.com/open-mmlab/mmaction2/blob/master/configs/recognition/slowfast/README.md">SlowFast</a> (ICCV'2019)</td>
</tr>
<tr>
<td><a href="https://github.com/open-mmlab/mmaction2/blob/master/configs/recognition/csn/README.md">CSN</a> (ICCV'2019)</td>
<td><a href="https://github.com/open-mmlab/mmaction2/blob/master/configs/recognition/tin/README.md">TIN</a> (AAAI'2020)</td>
<td><a href="https://github.com/open-mmlab/mmaction2/blob/master/configs/recognition/tpn/README.md">TPN</a> (CVPR'2020)</td>
<td><a href="https://github.com/open-mmlab/mmaction2/blob/master/configs/recognition/x3d/README.md">X3D</a> (CVPR'2020)</td>
<td><a href="https://github.com/open-mmlab/mmaction2/blob/master/configs/recognition/omnisource/README.md">OmniSource</a> (ECCV'2020)</td>
</tr>
<tr>
<td><a href="https://github.com/open-mmlab/mmaction2/blob/master/configs/recognition_audio/resnet/README.md">MultiModality: Audio</a> (ArXiv'2020)</td>
<td><a href="https://github.com/open-mmlab/mmaction2/blob/master/configs/recognition/tanet/README.md">TANet</a> (ArXiv'2020)</td>
<td><a href="https://github.com/open-mmlab/mmaction2/blob/master/configs/recognition/timesformer/README.md">TimeSformer</a> (ICML'2021)</td>
<td></td>
<td></td>
</tr>
<tr>
<td colspan="5" style="font-weight:bold;">Action Localization</td>
</tr>
<tr>
<td><a href="https://github.com/open-mmlab/mmaction2/blob/master/configs/localization/ssn/README.md">SSN</a> (ICCV'2017)</td>
<td><a href="https://github.com/open-mmlab/mmaction2/blob/master/configs/localization/bsn/README.md">BSN</a> (ECCV'2018)</td>
<td><a href="https://github.com/open-mmlab/mmaction2/blob/master/configs/localization/bmn/README.md">BMN</a> (ICCV'2019)</td>
<td></td>
<td></td>
</tr>
<tr>
<td colspan="5" style="font-weight:bold;">Spatio-Temporal Action Detection</td>
</tr>
<tr>
<td><a href="https://github.com/open-mmlab/mmaction2/blob/master/configs/detection/acrn/README.md">ACRN</a> (ECCV'2018)</td>
<td><a href="https://github.com/open-mmlab/mmaction2/blob/master/configs/detection/ava/README.md">SlowOnly+Fast R-CNN</a> (ICCV'2019)</td>
<td><a href="https://github.com/open-mmlab/mmaction2/blob/master/configs/detection/ava/README.md">SlowFast+Fast R-CNN</a> (ICCV'2019)</td>
<td><a href="https://github.com/open-mmlab/mmaction2/blob/master/configs/detection/lfb/README.md">LFB</a> (CVPR'2019)</td>
<td></td>
</tr>
<tr>
<td colspan="5" style="font-weight:bold;">Skeleton-based Action Recognition</td>
</tr>
<tr>
<td><a href="https://github.com/open-mmlab/mmaction2/blob/master/configs/skeleton/stgcn/README.md">ST-GCN</a> (AAAI'2018)</td>
<td><a href="https://github.com/open-mmlab/mmaction2/blob/master/configs/skeleton/2s-agcn/README.md">2s-AGCN</a> (CVPR'2019)</td>
<td><a href="https://github.com/open-mmlab/mmaction2/blob/master/configs/skeleton/posec3d/README.md">PoseC3D</a> (ArXiv'2021)</td>
<td></td>
<td></td>
</tr>
</table>
Results and models are available in the *README.md* of each method's config directory.
A summary can be found on the [**model zoo**](https://mmaction2.readthedocs.io/en/latest/recognition_models.html) page.
We will keep up with the latest progress of the community and support more popular algorithms and frameworks.
If you have any feature requests, please feel free to leave a comment in [Issues](https://github.com/open-mmlab/mmaction2/issues/19).
## Supported Datasets
<table style="margin-left:auto;margin-right:auto;font-size:1.3vw;padding:3px 5px;text-align:center;vertical-align:center;">
<tr>
<td colspan="4" style="font-weight:bold;">Action Recognition</td>
</tr>
<tr>
<td><a href="https://github.com/open-mmlab/mmaction2/blob/master/tools/data/hmdb51/README.md">HMDB51</a> (<a href="https://serre-lab.clps.brown.edu/resource/hmdb-a-large-human-motion-database/">Homepage</a>) (ICCV'2011)</td>
<td><a href="https://github.com/open-mmlab/mmaction2/blob/master/tools/data/ucf101/README.md">UCF101</a> (<a href="https://www.crcv.ucf.edu/research/data-sets/ucf101/">Homepage</a>) (CRCV-IR-12-01)</td>
<td><a href="https://github.com/open-mmlab/mmaction2/blob/master/tools/data/activitynet/README.md">ActivityNet</a> (<a href="http://activity-net.org/">Homepage</a>) (CVPR'2015)</td>
<td><a href="https://github.com/open-mmlab/mmaction2/blob/master/tools/data/kinetics/README.md">Kinetics-[400/600/700]</a> (<a href="https://deepmind.com/research/open-source/kinetics/">Homepage</a>) (CVPR'2017)</td>
</tr>
<tr>
<td><a href="https://github.com/open-mmlab/mmaction2/blob/master/tools/data/sthv1/README.md">SthV1</a> (<a href="https://20bn.com/datasets/something-something/v1/">Homepage</a>) (ICCV'2017)</td>
<td><a href="https://github.com/open-mmlab/mmaction2/blob/master/tools/data/sthv2/README.md">SthV2</a> (<a href="https://20bn.com/datasets/something-something/">Homepage</a>) (ICCV'2017)</td>
<td><a href="https://github.com/open-mmlab/mmaction2/blob/master/tools/data/diving48/README.md">Diving48</a> (<a href="http://www.svcl.ucsd.edu/projects/resound/dataset.html">Homepage</a>) (ECCV'2018)</td>
<td><a href="https://github.com/open-mmlab/mmaction2/blob/master/tools/data/jester/README.md">Jester</a> (<a href="https://20bn.com/datasets/jester/v1">Homepage</a>) (ICCV'2019)</td>
</tr>
<tr>
<td><a href="https://github.com/open-mmlab/mmaction2/blob/master/tools/data/mit/README.md">Moments in Time</a> (<a href="http://moments.csail.mit.edu/">Homepage</a>) (TPAMI'2019)</td>
<td><a href="https://github.com/open-mmlab/mmaction2/blob/master/tools/data/mmit/README.md">Multi-Moments in Time</a> (<a href="http://moments.csail.mit.edu/challenge_iccv_2019.html">Homepage</a>) (ArXiv'2019)</td>
<td><a href="https://github.com/open-mmlab/mmaction2/blob/master/tools/data/hvu/README.md">HVU</a> (<a href="https://github.com/holistic-video-understanding/HVU-Dataset">Homepage</a>) (ECCV'2020)</td>
<td><a href="https://github.com/open-mmlab/mmaction2/blob/master/tools/data/omnisource/README.md">OmniSource</a> (<a href="https://kennymckormick.github.io/omnisource/">Homepage</a>) (ECCV'2020)</td>
</tr>
<tr>
<td><a href="https://github.com/open-mmlab/mmaction2/blob/master/tools/data/gym/README.md">FineGYM</a> (<a href="https://sdolivia.github.io/FineGym/">Homepage</a>) (CVPR'2020)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td colspan="4" style="font-weight:bold;">Action Localization</td>
</tr>
<tr>
<td><a href="https://github.com/open-mmlab/mmaction2/blob/master/tools/data/thumos14/README.md">THUMOS14</a> (<a href="https://www.crcv.ucf.edu/THUMOS14/download.html">Homepage</a>) (THUMOS Challenge 2014)</td>
<td><a href="https://github.com/open-mmlab/mmaction2/blob/master/tools/data/activitynet/README.md">ActivityNet</a> (<a href="http://activity-net.org/">Homepage</a>) (CVPR'2015)</td>
<td></td>
<td></td>
</tr>
<tr>
<td colspan="4" style="font-weight:bold;">Spatio-Temporal Action Detection</td>
</tr>
<tr>
<td><a href="https://github.com/open-mmlab/mmaction2/blob/master/tools/data/ucf101_24/README.md">UCF101-24*</a> (<a href="http://www.thumos.info/download.html">Homepage</a>) (CRCV-IR-12-01)</td>
<td><a href="https://github.com/open-mmlab/mmaction2/blob/master/tools/data/jhmdb/README.md">JHMDB*</a> (<a href="http://jhmdb.is.tue.mpg.de/">Homepage</a>) (ICCV'2015)</td>
<td><a href="https://github.com/open-mmlab/mmaction2/blob/master/tools/data/ava/README.md">AVA</a> (<a href="https://research.google.com/ava/index.html">Homepage</a>) (CVPR'2018)</td>
<td></td>
</tr>
<tr>
<td colspan="4" style="font-weight:bold;">Skeleton-based Action Recognition</td>
</tr>
<tr>
<td><a href="https://github.com/open-mmlab/mmaction2/blob/master/tools/data/skeleton/README.md">PoseC3D-FineGYM</a> (<a href="https://kennymckormick.github.io/posec3d/">Homepage</a>) (ArXiv'2021)</td>
<td><a href="https://github.com/open-mmlab/mmaction2/blob/master/tools/data/skeleton/README.md">PoseC3D-NTURGB+D</a> (<a href="https://kennymckormick.github.io/posec3d/">Homepage</a>) (ArXiv'2021)</td>
<td><a href="https://github.com/open-mmlab/mmaction2/blob/master/tools/data/skeleton/README.md">PoseC3D-UCF101</a> (<a href="https://kennymckormick.github.io/posec3d/">Homepage</a>) (ArXiv'2021)</td>
<td><a href="https://github.com/open-mmlab/mmaction2/blob/master/tools/data/skeleton/README.md">PoseC3D-HMDB51</a> (<a href="https://kennymckormick.github.io/posec3d/">Homepage</a>) (ArXiv'2021)</td>
</tr>
</table>
Datasets marked with * are not fully supported yet, but related dataset preparation steps are provided. A summary can be found on the [**Supported Datasets**](https://mmaction2.readthedocs.io/en/latest/supported_datasets.html) page.
## Benchmark
To demonstrate the efficacy and efficiency of our framework, we compare MMAction2 with some other popular frameworks and official releases in terms of speed. Details can be found in [benchmark](docs/benchmark.md).
## Data Preparation
Please refer to [data_preparation.md](docs/data_preparation.md) for a general knowledge of data preparation.
The supported datasets are listed in [supported_datasets.md](docs/supported_datasets.md)
## FAQ
Please refer to [FAQ](docs/faq.md) for frequently asked questions.
## Projects built on MMAction2
Currently, there are many research works and projects built on MMAction2 by users from community, such as:
- Video Swin Transformer. [\[paper\]](https://arxiv.org/abs/2106.13230)[\[github\]](https://github.com/SwinTransformer/Video-Swin-Transformer)
- Evidential Deep Learning for Open Set Action Recognition, ICCV 2021 **Oral**. [\[paper\]](https://arxiv.org/abs/2107.10161)[\[github\]](https://github.com/Cogito2012/DEAR)
- Rethinking Self-supervised Correspondence Learning: A Video Frame-level Similarity Perspective, ICCV 2021 **Oral**. [\[paper\]](https://arxiv.org/abs/2103.17263)[\[github\]](https://github.com/xvjiarui/VFS)
etc., check [projects.md](docs/projects.md) to see all related projects.
## Contributing
We appreciate all contributions to improve MMAction2. Please refer to [CONTRIBUTING.md](https://github.com/open-mmlab/mmcv/blob/master/CONTRIBUTING.md) in MMCV for more details about the contributing guideline.
## Acknowledgement
MMAction2 is an open-source project that is contributed by researchers and engineers from various colleges and companies.
We appreciate all the contributors who implement their methods or add new features and users who give valuable feedback.
We wish that the toolbox and benchmark could serve the growing research community by providing a flexible toolkit to reimplement existing methods and develop their new models.
## Citation
If you find this project useful in your research, please consider cite:
```BibTeX
@misc{2020mmaction2,
title={OpenMMLab's Next Generation Video Understanding Toolbox and Benchmark},
author={MMAction2 Contributors},
howpublished = {\url{https://github.com/open-mmlab/mmaction2}},
year={2020}
}
```
## License
This project is released under the [Apache 2.0 license](LICENSE).
## Projects in OpenMMLab
- [MIM](https://github.com/open-mmlab/mim): MIM installs OpenMMLab packages.
- [MMClassification](https://github.com/open-mmlab/mmclassification): OpenMMLab image classification toolbox and benchmark.
- [MMDetection](https://github.com/open-mmlab/mmdetection): OpenMMLab detection toolbox and benchmark.
- [MMDetection3D](https://github.com/open-mmlab/mmdetection3d): OpenMMLab's next-generation platform for general 3D object detection.
- [MMRotate](https://github.com/open-mmlab/mmrotate): OpenMMLab rotated object detection toolbox and benchmark.
- [MMSegmentation](https://github.com/open-mmlab/mmsegmentation): OpenMMLab semantic segmentation toolbox and benchmark.
- [MMOCR](https://github.com/open-mmlab/mmocr): OpenMMLab text detection, recognition, and understanding toolbox.
- [MMPose](https://github.com/open-mmlab/mmpose): OpenMMLab pose estimation toolbox and benchmark.
- [MMHuman3D](https://github.com/open-mmlab/mmhuman3d): OpenMMLab 3D human parametric model toolbox and benchmark.
- [MMSelfSup](https://github.com/open-mmlab/mmselfsup): OpenMMLab self-supervised learning toolbox and benchmark.
- [MMRazor](https://github.com/open-mmlab/mmrazor): OpenMMLab model compression toolbox and benchmark.
- [MMFewShot](https://github.com/open-mmlab/mmfewshot): OpenMMLab fewshot learning toolbox and benchmark.
- [MMAction2](https://github.com/open-mmlab/mmaction2): OpenMMLab's next-generation action understanding toolbox and benchmark.
- [MMTracking](https://github.com/open-mmlab/mmtracking): OpenMMLab video perception toolbox and benchmark.
- [MMFlow](https://github.com/open-mmlab/mmflow): OpenMMLab optical flow toolbox and benchmark.
- [MMEditing](https://github.com/open-mmlab/mmediting): OpenMMLab image and video editing toolbox.
- [MMGeneration](https://github.com/open-mmlab/mmgeneration): OpenMMLab image and video generative models toolbox.
- [MMDeploy](https://github.com/open-mmlab/mmdeploy): OpenMMLab model deployment framework.
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment