# # This source code is licensed under the license found in the # # LICENSE file in the root directory of this source tree. # # -------------------------------------------------------- # # References: # # PixArt: https://github.com/PixArt-alpha/PixArt-alpha # # Latte: https://github.com/Vchitect/Latte # # DiT: https://github.com/facebookresearch/DiT/tree/main # # GLIDE: https://github.com/openai/glide-text2im # # MAE: https://github.com/facebookresearch/mae/blob/main/models_mae.py # # -------------------------------------------------------- # import math # from typing import KeysView # import numpy as np # import torch # import torch.distributed as dist # import torch.nn as nn # import torch.nn.functional as F # import torch.utils.checkpoint # import xformers.ops # from einops import rearrange # from timm.models.vision_transformer import Mlp # from opensora.acceleration.communications import all_to_all, split_forward_gather_backward # from opensora.acceleration.parallel_states import get_sequence_parallel_group # import ipdb # import cv2 # import os # approx_gelu = lambda: nn.GELU(approximate="tanh") # class LlamaRMSNorm(nn.Module): # def __init__(self, hidden_size, eps=1e-6): # """ # LlamaRMSNorm is equivalent to T5LayerNorm # """ # super().__init__() # self.weight = nn.Parameter(torch.ones(hidden_size)) # self.variance_epsilon = eps # def forward(self, hidden_states): # #ipdb.set_trace() # input_dtype = hidden_states.dtype # hidden_states = hidden_states.to(torch.float32) # variance = hidden_states.pow(2).mean(-1, keepdim=True) # hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon) # #ipdb.set_trace() # return self.weight * hidden_states.to(input_dtype) # def get_layernorm(hidden_size: torch.Tensor, eps: float, affine: bool, use_kernel: bool): # if use_kernel: # try: # from apex.normalization import FusedLayerNorm # return FusedLayerNorm(hidden_size, elementwise_affine=affine, eps=eps) # except ImportError: # raise RuntimeError("FusedLayerNorm not available. Please install apex.") # else: # return nn.LayerNorm(hidden_size, eps, elementwise_affine=affine) # def modulate(norm_func, x, shift, scale): # # Suppose x is (B, N, D), shift is (B, D), scale is (B, D) # dtype = x.dtype # x = norm_func(x.to(torch.float32)).to(dtype) # x = x * (scale.unsqueeze(1) + 1) + shift.unsqueeze(1) # x = x.to(dtype) # return x # def t2i_modulate(x, shift, scale): # return x * (1 + scale) + shift # def get_attn_mask(query, key, idx): # scale = 1.0 / query.shape[-1] ** 0.5 # query = query * scale # query = query.transpose(0, 1) # key = key.transpose(0, 1) # attn = query @ key.transpose(-2, -1) # attn = attn.softmax(-1) # H S L # #attn = F.dropout(attn, p=0.0) # # attn[attn>0.5]=1 # # attn[attn<=0.5]=0 # # attn[attn==1]=255 # attn = attn * 255 # H, S, L = attn.shape # hight = 64 # width = 64 # for h in range(H): # for l in range(L): # map = attn[h, :, l] # map = rearrange(map, '(H W) -> H W', H=hight, W=width) # map = F.interpolate(map.unsqueeze(0).unsqueeze(0), size=[256,256],mode='nearest') # np_array = map.squeeze(0).squeeze(0).detach().cpu().numpy() # image = cv2.imwrite(os.path.join("/mnt/bn/yh-volume0/code/debug/code/OpenSora/outputs/vis", 'map'+str(idx)+'_head'+str(h)+'_word'+str(l)+'.jpg'), np_array) # print("成功保存图像!") # # =============================================== # # General-purpose Layers # # =============================================== # class PatchEmbed3D(nn.Module): # """Video to Patch Embedding. # Args: # patch_size (int): Patch token size. Default: (2,4,4). # in_chans (int): Number of input video channels. Default: 3. # embed_dim (int): Number of linear projection output channels. Default: 96. # norm_layer (nn.Module, optional): Normalization layer. Default: None # """ # def __init__( # self, # patch_size=(2, 4, 4), # in_chans=3, # embed_dim=96, # norm_layer=None, # flatten=True, # ): # super().__init__() # self.patch_size = patch_size # self.flatten = flatten # self.in_chans = in_chans # self.embed_dim = embed_dim # self.proj = nn.Conv3d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size) # if norm_layer is not None: # self.norm = norm_layer(embed_dim) # else: # self.norm = None # def forward(self, x): # """Forward function.""" # # padding # _, _, D, H, W = x.size() # if W % self.patch_size[2] != 0: # x = F.pad(x, (0, self.patch_size[2] - W % self.patch_size[2])) # if H % self.patch_size[1] != 0: # x = F.pad(x, (0, 0, 0, self.patch_size[1] - H % self.patch_size[1])) # if D % self.patch_size[0] != 0: # x = F.pad(x, (0, 0, 0, 0, 0, self.patch_size[0] - D % self.patch_size[0])) # x = self.proj(x) # (B C T H W) # if self.norm is not None: # D, Wh, Ww = x.size(2), x.size(3), x.size(4) # x = x.flatten(2).transpose(1, 2) # x = self.norm(x) # x = x.transpose(1, 2).view(-1, self.embed_dim, D, Wh, Ww) # if self.flatten: # x = x.flatten(2).transpose(1, 2) # BCTHW -> BNC # return x # class Attention(nn.Module): # def __init__( # self, # dim: int, # num_heads: int = 8, # qkv_bias: bool = False, # qk_norm: bool = False, # attn_drop: float = 0.0, # proj_drop: float = 0.0, # norm_layer: nn.Module = nn.LayerNorm, # enable_flashattn: bool = False, # ) -> None: # super().__init__() # assert dim % num_heads == 0, "dim should be divisible by num_heads" # self.dim = dim # self.num_heads = num_heads # self.head_dim = dim // num_heads # self.scale = self.head_dim**-0.5 # self.enable_flashattn = enable_flashattn # self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) # self.q_norm = norm_layer(self.head_dim) if qk_norm else nn.Identity() # self.k_norm = norm_layer(self.head_dim) if qk_norm else nn.Identity() # self.attn_drop = nn.Dropout(attn_drop) # self.proj = nn.Linear(dim, dim) # self.proj_drop = nn.Dropout(proj_drop) # def forward(self, x: torch.Tensor) -> torch.Tensor: # B, N, C = x.shape # qkv = self.qkv(x) # qkv_shape = (B, N, 3, self.num_heads, self.head_dim) # if self.enable_flashattn: # here # qkv_permute_shape = (2, 0, 1, 3, 4) # else: # qkv_permute_shape = (2, 0, 3, 1, 4) # qkv = qkv.view(qkv_shape).permute(qkv_permute_shape) # q, k, v = qkv.unbind(0) # q, k = self.q_norm(q), self.k_norm(k) # if self.enable_flashattn: # from flash_attn import flash_attn_func # x = flash_attn_func( # q, # k, # v, # dropout_p=self.attn_drop.p if self.training else 0.0, # softmax_scale=self.scale, # ) # else: # dtype = q.dtype # q = q * self.scale # attn = q @ k.transpose(-2, -1) # translate attn to float32 # attn = attn.to(torch.float32) # attn = attn.softmax(dim=-1) # attn = attn.to(dtype) # cast back attn to original dtype # attn = self.attn_drop(attn) # x = attn @ v # x_output_shape = (B, N, C) # if not self.enable_flashattn: # x = x.transpose(1, 2) # x = x.reshape(x_output_shape) # x = self.proj(x) # x = self.proj_drop(x) # return x # class Attention_QKNorm_RoPE(nn.Module): # def __init__( # self, # dim: int, # num_heads: int = 8, # qkv_bias: bool = False, # qk_norm: bool = False, # attn_drop: float = 0.0, # proj_drop: float = 0.0, # norm_layer: nn.Module = LlamaRMSNorm, # enable_flashattn: bool = False, # rope=None, # ) -> None: # super().__init__() # assert dim % num_heads == 0, "dim should be divisible by num_heads" # self.dim = dim # self.num_heads = num_heads # self.head_dim = dim // num_heads # self.scale = self.head_dim**-0.5 # self.enable_flashattn = enable_flashattn # self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) # self.q_norm = norm_layer(self.head_dim) if qk_norm else nn.Identity() # self.k_norm = norm_layer(self.head_dim) if qk_norm else nn.Identity() # self.attn_drop = nn.Dropout(attn_drop) # self.proj = nn.Linear(dim, dim) # self.proj_drop = nn.Dropout(proj_drop) # self.rotary_emb = rope # def forward(self, x: torch.Tensor) -> torch.Tensor: # B, N, C = x.shape # qkv = self.qkv(x) # qkv_shape = (B, N, 3, self.num_heads, self.head_dim) # if self.enable_flashattn: # qkv_permute_shape = (2, 0, 1, 3, 4) # else: # qkv_permute_shape = (2, 0, 3, 1, 4) # qkv = qkv.view(qkv_shape).permute(qkv_permute_shape) # q, k, v = qkv.unbind(0) # #ipdb.set_trace() # if self.rotary_emb is not None: # q = self.rotary_emb(q) # k = self.rotary_emb(k) # #ipdb.set_trace() # q, k = self.q_norm(q), self.k_norm(k) # #ipdb.set_trace() # if self.enable_flashattn: # from flash_attn import flash_attn_func # x = flash_attn_func( # q, # k, # v, # dropout_p=self.attn_drop.p if self.training else 0.0, # softmax_scale=self.scale, # ) # else: # dtype = q.dtype # q = q * self.scale # attn = q @ k.transpose(-2, -1) # translate attn to float32 # attn = attn.to(torch.float32) # attn = attn.softmax(dim=-1) # attn = attn.to(dtype) # cast back attn to original dtype # attn = self.attn_drop(attn) # x = attn @ v # x_output_shape = (B, N, C) # if not self.enable_flashattn: # x = x.transpose(1, 2) # x = x.reshape(x_output_shape) # x = self.proj(x) # x = self.proj_drop(x) # return x # class MaskedSelfAttention(nn.Module): # def __init__( # self, # dim: int, # num_heads: int = 8, # qkv_bias: bool = False, # qk_norm: bool = False, # attn_drop: float = 0.0, # proj_drop: float = 0.0, # norm_layer: nn.Module = LlamaRMSNorm, # enable_flashattn: bool = False, # rope=None, # ) -> None: # super().__init__() # assert dim % num_heads == 0, "dim should be divisible by num_heads" # self.dim = dim # self.num_heads = num_heads # self.head_dim = dim // num_heads # self.scale = self.head_dim**-0.5 # self.enable_flashattn = enable_flashattn # self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) # self.q_norm = norm_layer(self.head_dim) if qk_norm else nn.Identity() # self.k_norm = norm_layer(self.head_dim) if qk_norm else nn.Identity() # self.attn_drop = nn.Dropout(attn_drop) # self.proj = nn.Linear(dim, dim) # self.proj_drop = nn.Dropout(proj_drop) # self.rotary_emb = rope # def forward(self, x, mask): # B, N, C = x.shape # qkv = self.qkv(x) # qkv_shape = (B, N, 3, self.num_heads, self.head_dim) # qkv_permute_shape = (2, 0, 3, 1, 4) # qkv = qkv.view(qkv_shape).permute(qkv_permute_shape) # q, k, v = qkv.unbind(0) # B H N C # #ipdb.set_trace() # if self.rotary_emb is not None: # q = self.rotary_emb(q) # k = self.rotary_emb(k) # #ipdb.set_trace() # q, k = self.q_norm(q), self.k_norm(k) # #ipdb.set_trace() # mask = mask.unsqueeze(1).unsqueeze(1).repeat(1, self.num_heads, 1, 1).to(torch.float32) # B H 1 N # dtype = q.dtype # q = q * self.scale # attn = q @ k.transpose(-2, -1) # translate attn to float32 # attn = attn.to(torch.float32) # attn = attn.masked_fill(mask == 0, -1e9) # attn = attn.softmax(dim=-1) # attn = attn.to(dtype) # cast back attn to original dtype # attn = self.attn_drop(attn) # x = attn @ v # x_output_shape = (B, N, C) # x = x.transpose(1, 2) # x = x.reshape(x_output_shape) # x = self.proj(x) # x = self.proj_drop(x) # return x # class SeqParallelAttention(Attention): # def __init__( # self, # dim: int, # num_heads: int = 8, # qkv_bias: bool = False, # qk_norm: bool = False, # attn_drop: float = 0.0, # proj_drop: float = 0.0, # norm_layer: nn.Module = nn.LayerNorm, # enable_flashattn: bool = False, # ) -> None: # super().__init__( # dim=dim, # num_heads=num_heads, # qkv_bias=qkv_bias, # qk_norm=qk_norm, # attn_drop=attn_drop, # proj_drop=proj_drop, # norm_layer=norm_layer, # enable_flashattn=enable_flashattn, # ) # def forward(self, x: torch.Tensor) -> torch.Tensor: # B, N, C = x.shape # for sequence parallel here, the N is a local sequence length # qkv = self.qkv(x) # qkv_shape = (B, N, 3, self.num_heads, self.head_dim) # qkv = qkv.view(qkv_shape) # sp_group = get_sequence_parallel_group() # # apply all_to_all to gather sequence and split attention heads # # [B, SUB_N, 3, NUM_HEAD, HEAD_DIM] -> [B, N, 3, NUM_HEAD_PER_DEVICE, HEAD_DIM] # qkv = all_to_all(qkv, sp_group, scatter_dim=3, gather_dim=1) # if self.enable_flashattn: # qkv_permute_shape = (2, 0, 1, 3, 4) # [3, B, N, NUM_HEAD_PER_DEVICE, HEAD_DIM] # else: # qkv_permute_shape = (2, 0, 3, 1, 4) # [3, B, NUM_HEAD_PER_DEVICE, N, HEAD_DIM] # qkv = qkv.permute(qkv_permute_shape) # q, k, v = qkv.unbind(0) # q, k = self.q_norm(q), self.k_norm(k) # if self.enable_flashattn: # from flash_attn import flash_attn_func # x = flash_attn_func( # q, # k, # v, # dropout_p=self.attn_drop.p if self.training else 0.0, # softmax_scale=self.scale, # ) # else: # dtype = q.dtype # q = q * self.scale # attn = q @ k.transpose(-2, -1) # translate attn to float32 # attn = attn.to(torch.float32) # attn = attn.softmax(dim=-1) # attn = attn.to(dtype) # cast back attn to original dtype # attn = self.attn_drop(attn) # x = attn @ v # if not self.enable_flashattn: # x = x.transpose(1, 2) # # apply all to all to gather back attention heads and split sequence # # [B, N, NUM_HEAD_PER_DEVICE, HEAD_DIM] -> [B, SUB_N, NUM_HEAD, HEAD_DIM] # x = all_to_all(x, sp_group, scatter_dim=1, gather_dim=2) # # reshape outputs back to [B, N, C] # x_output_shape = (B, N, C) # x = x.reshape(x_output_shape) # x = self.proj(x) # x = self.proj_drop(x) # return x # class MultiHeadCrossAttention(nn.Module): # def __init__(self, d_model, num_heads, attn_drop=0.0, proj_drop=0.0): # super(MultiHeadCrossAttention, self).__init__() # assert d_model % num_heads == 0, "d_model must be divisible by num_heads" # self.d_model = d_model # self.num_heads = num_heads # self.head_dim = d_model // num_heads # self.q_linear = nn.Linear(d_model, d_model) # self.kv_linear = nn.Linear(d_model, d_model * 2) # self.attn_drop = nn.Dropout(attn_drop) # self.proj = nn.Linear(d_model, d_model) # self.proj_drop = nn.Dropout(proj_drop) # def forward(self, x, cond, mask=None, i=0, t=0): # # query/value: img tokens; key: condition; mask: if padding tokens # B, N, C = x.shape # q = self.q_linear(x).view(1, -1, self.num_heads, self.head_dim) # kv = self.kv_linear(cond).view(1, -1, 2, self.num_heads, self.head_dim) # k, v = kv.unbind(2) # #ipdb.set_trace() # attn_bias = None # if mask is not None: # attn_bias = xformers.ops.fmha.BlockDiagonalMask.from_seqlens([N] * B, mask) # # vis # print(t[0].item()) # if i == 27 and t[0].item() >= 480.0 and t[0].item() <= 500.0: # q1 = q[:, :N, :, :].squeeze(0) # S H C # q2 = q[:, N:, :, :].squeeze(0) # S H C # k1 = k[:, :mask[0], :, :].squeeze(0) # L H C # k2 = k[:, mask[0]:, :, :].squeeze(0) # L H C # get_attn_mask(q1, k1, 1) # get_attn_mask(q2, k2, 2) # # vis # x = xformers.ops.memory_efficient_attention(q, k, v, p=self.attn_drop.p, attn_bias=attn_bias) # #ipdb.set_trace() # x = x.view(B, -1, C) # x = self.proj(x) # x = self.proj_drop(x) # return x # class MaskedMultiHeadCrossAttention(nn.Module): # def __init__(self, d_model, num_heads, attn_drop=0.0, proj_drop=0.0): # super(MaskedMultiHeadCrossAttention, self).__init__() # assert d_model % num_heads == 0, "d_model must be divisible by num_heads" # self.d_model = d_model # self.num_heads = num_heads # self.head_dim = d_model // num_heads # self.q_linear = nn.Linear(d_model, d_model) # self.kv_linear = nn.Linear(d_model, d_model * 2) # self.attn_drop = nn.Dropout(attn_drop) # self.proj = nn.Linear(d_model, d_model) # self.proj_drop = nn.Dropout(proj_drop) # def forward(self, x, cond, mask=None): # # query/value: img tokens; key: condition; mask: if padding tokens # B, S, C = x.shape # L = cond.shape[1] # q = self.q_linear(x).view(B, S, self.num_heads, self.head_dim) # kv = self.kv_linear(cond).view(B, L, 2, self.num_heads, self.head_dim) # k, v = kv.unbind(2) # #ipdb.set_trace() # attn_bias = None # if mask is not None: # attn_bias = mask.unsqueeze(1).unsqueeze(1).repeat(1, self.num_heads, S, 1).to(q.dtype) # B H S L # exp = -1e9 # attn_bias[attn_bias==0] = exp # attn_bias[attn_bias==1] = 0 # x = xformers.ops.memory_efficient_attention(q, k, v, p=self.attn_drop.p, attn_bias=attn_bias) # #ipdb.set_trace() # x = x.view(B, -1, C) # x = self.proj(x) # x = self.proj_drop(x) # return x # class LongShortMultiHeadCrossAttention(nn.Module): # def __init__(self, d_model, num_heads, attn_drop=0.0, proj_drop=0.0): # super(LongShortMultiHeadCrossAttention, self).__init__() # assert d_model % num_heads == 0, "d_model must be divisible by num_heads" # self.d_model = d_model # self.num_heads = num_heads # self.head_dim = d_model // num_heads # self.q_linear = nn.Linear(d_model, d_model) # self.kv_linear = nn.Linear(d_model, d_model * 2) # self.attn_drop = nn.Dropout(attn_drop) # self.proj = nn.Linear(d_model, d_model) # self.proj_drop = nn.Dropout(proj_drop) # def forward(self, x, cond, mask=None): # # query/value: img tokens; key: condition; mask: if padding tokens # B, N, C = x.shape # M = cond.shape[1] # q = self.q_linear(x).view(B, N, self.num_heads, self.head_dim) # kv = self.kv_linear(cond).view(B, M, 2, self.num_heads, self.head_dim) # k, v = kv.unbind(2) # attn_bias = None # if mask is not None: # attn_bias = xformers.ops.fmha.BlockDiagonalMask.from_seqlens([N] * B, mask) # x = xformers.ops.memory_efficient_attention(q, k, v, p=self.attn_drop.p, attn_bias=attn_bias) # x = x.view(B, N, C) # x = self.proj(x) # x = self.proj_drop(x) # return x # class MultiHeadV2TCrossAttention(nn.Module): # def __init__(self, d_model, num_heads, attn_drop=0.0, proj_drop=0.0): # super(MultiHeadV2TCrossAttention, self).__init__() # assert d_model % num_heads == 0, "d_model must be divisible by num_heads" # self.d_model = d_model # self.num_heads = num_heads # self.head_dim = d_model // num_heads # self.q_linear = nn.Linear(d_model, d_model) # self.kv_linear = nn.Linear(d_model, d_model * 2) # self.attn_drop = nn.Dropout(attn_drop) # self.proj = nn.Linear(d_model, d_model) # self.proj_drop = nn.Dropout(proj_drop) # def forward(self, x, cond, mask=None): # # query/value: condition; key: img tokens; mask: if padding tokens # B, N, C = cond.shape # q = self.q_linear(x).view(1, -1, self.num_heads, self.head_dim) # kv = self.kv_linear(cond).view(1, -1, 2, self.num_heads, self.head_dim) # k, v = kv.unbind(2) # #ipdb.set_trace() # attn_bias = None # if mask is not None: # attn_bias = xformers.ops.fmha.BlockDiagonalMask.from_seqlens(mask, [N] * B) # x = xformers.ops.memory_efficient_attention(q, k, v, p=self.attn_drop.p, attn_bias=attn_bias) # #ipdb.set_trace() # x = x.view(B, -1, C) # x = self.proj(x) # x = self.proj_drop(x) # return x # class MultiHeadT2VCrossAttention(nn.Module): # def __init__(self, d_model, num_heads, attn_drop=0.0, proj_drop=0.0): # super(MultiHeadT2VCrossAttention, self).__init__() # assert d_model % num_heads == 0, "d_model must be divisible by num_heads" # self.d_model = d_model # self.num_heads = num_heads # self.head_dim = d_model // num_heads # self.q_linear = nn.Linear(d_model, d_model) # self.kv_linear = nn.Linear(d_model, d_model * 2) # self.attn_drop = nn.Dropout(attn_drop) # self.proj = nn.Linear(d_model, d_model) # self.proj_drop = nn.Dropout(proj_drop) # def forward(self, x, cond, mask=None): # # query/value: img tokens; key: condition; mask: if padding tokens # #ipdb.set_trace() # B, T, N, C = x.shape # x = rearrange(x, 'B T N C -> (B T) N C') # q = self.q_linear(x) # q = rearrange(q, '(B T) N C -> B T N C', T=T) # q = q.view(1, -1, self.num_heads, self.head_dim) # 1(B T N) H C # kv = self.kv_linear(cond) # kv = kv.view(1, -1, 2, self.num_heads, self.head_dim) # 1 N 2 H C # k, v = kv.unbind(2) # #ipdb.set_trace() # attn_bias = None # if mask is not None: # #mask = [m for m in mask for _ in range(T)] # attn_bias = xformers.ops.fmha.BlockDiagonalMask.from_seqlens([N] * (B*T), mask) # x = xformers.ops.memory_efficient_attention(q, k, v, p=self.attn_drop.p, attn_bias=attn_bias) # #ipdb.set_trace() # x = x.view(B, T, N, C) # x = rearrange(x, 'B T N C -> (B T) N C') # x = self.proj(x) # x = self.proj_drop(x) # x = rearrange(x, '(B T) N C -> B T N C', T=T) # return x # class FormerMultiHeadV2TCrossAttention(nn.Module): # def __init__(self, d_model, num_heads, attn_drop=0.0, proj_drop=0.0): # super(FormerMultiHeadV2TCrossAttention, self).__init__() # assert d_model % num_heads == 0, "d_model must be divisible by num_heads" # self.d_model = d_model # self.num_heads = num_heads # self.head_dim = d_model // num_heads # self.q_linear = nn.Linear(d_model, d_model) # self.kv_linear = nn.Linear(d_model, d_model * 2) # self.attn_drop = nn.Dropout(attn_drop) # self.proj = nn.Linear(d_model, d_model) # self.proj_drop = nn.Dropout(proj_drop) # def forward(self, x, cond, mask=None): # # x: text tokens; cond: img tokens; mask: if padding tokens # #ipdb.set_trace() # _, N, C = x.shape # 1 N C # B, T, _, _ = cond.shape # cond = rearrange(cond, 'B T N C -> (B T) N C') # q = self.q_linear(x) # q = q.view(1, -1, self.num_heads, self.head_dim) # 1 N H C # kv = self.kv_linear(cond) # kv = rearrange(kv, '(B T) N C -> B T N C', B=B) # M = kv.shape[2] # M = H * W # former_frame_index = torch.arange(T) - 1 # former_frame_index[0] = 0 # #ipdb.set_trace() # former_kv = kv[:, former_frame_index] # former_kv = former_kv.view(1, -1, 2, self.num_heads, self.head_dim) # 1(B T N) 2 H C # former_k, former_v = former_kv.unbind(2) # #ipdb.set_trace() # attn_bias = None # if mask is not None: # #mask = [m for m in mask for _ in range(T)] # attn_bias = xformers.ops.fmha.BlockDiagonalMask.from_seqlens(mask, [M] * (B*T)) # x = xformers.ops.memory_efficient_attention(q, former_k, former_v, p=self.attn_drop.p, attn_bias=attn_bias) # #ipdb.set_trace() # x = x.view(1, -1, C) # x = self.proj(x) # x = self.proj_drop(x) # return x # class LatterMultiHeadV2TCrossAttention(nn.Module): # def __init__(self, d_model, num_heads, attn_drop=0.0, proj_drop=0.0): # super(LatterMultiHeadV2TCrossAttention, self).__init__() # assert d_model % num_heads == 0, "d_model must be divisible by num_heads" # self.d_model = d_model # self.num_heads = num_heads # self.head_dim = d_model // num_heads # self.q_linear = nn.Linear(d_model, d_model) # self.kv_linear = nn.Linear(d_model, d_model * 2) # self.attn_drop = nn.Dropout(attn_drop) # self.proj = nn.Linear(d_model, d_model) # self.proj_drop = nn.Dropout(proj_drop) # def forward(self, x, cond, mask=None): # # x: text tokens; cond: img tokens; mask: if padding tokens # #ipdb.set_trace() # _, N, C = x.shape # 1 N C # B, T, _, _ = cond.shape # cond = rearrange(cond, 'B T N C -> (B T) N C') # q = self.q_linear(x) # q = q.view(1, -1, self.num_heads, self.head_dim) # 1 N H C # kv = self.kv_linear(cond) # kv = rearrange(kv, '(B T) N C -> B T N C', T=T) # M = kv.shape[2] # M = H * W # latter_frame_index = torch.arange(T) + 1 # latter_frame_index[-1] = T - 1 # #ipdb.set_trace() # latter_kv = kv[:, latter_frame_index] # latter_kv = latter_kv.view(1, -1, 2, self.num_heads, self.head_dim) # 1(B T N) 2 H C # latter_k, latter_v = latter_kv.unbind(2) # #ipdb.set_trace() # attn_bias = None # if mask is not None: # # mask = [m for m in mask for _ in range(T)] # attn_bias = xformers.ops.fmha.BlockDiagonalMask.from_seqlens(mask, [M] * (B*T)) # x = xformers.ops.memory_efficient_attention(q, latter_k, latter_v, p=self.attn_drop.p, attn_bias=attn_bias) # #ipdb.set_trace() # x = x.view(1, -1, C) # x = self.proj(x) # x = self.proj_drop(x) # return x # class SeqParallelMultiHeadCrossAttention(MultiHeadCrossAttention): # def __init__( # self, # d_model, # num_heads, # attn_drop=0.0, # proj_drop=0.0, # ): # super().__init__(d_model=d_model, num_heads=num_heads, attn_drop=attn_drop, proj_drop=proj_drop) # def forward(self, x, cond, mask=None): # # query/value: img tokens; key: condition; mask: if padding tokens # sp_group = get_sequence_parallel_group() # sp_size = dist.get_world_size(sp_group) # B, SUB_N, C = x.shape # N = SUB_N * sp_size # # shape: # # q, k, v: [B, SUB_N, NUM_HEADS, HEAD_DIM] # q = self.q_linear(x).view(B, -1, self.num_heads, self.head_dim) # kv = self.kv_linear(cond).view(B, -1, 2, self.num_heads, self.head_dim) # k, v = kv.unbind(2) # # apply all_to_all to gather sequence and split attention heads # q = all_to_all(q, sp_group, scatter_dim=2, gather_dim=1) # k = split_forward_gather_backward(k, get_sequence_parallel_group(), dim=2, grad_scale="down") # v = split_forward_gather_backward(v, get_sequence_parallel_group(), dim=2, grad_scale="down") # q = q.view(1, -1, self.num_heads // sp_size, self.head_dim) # k = k.view(1, -1, self.num_heads // sp_size, self.head_dim) # v = v.view(1, -1, self.num_heads // sp_size, self.head_dim) # # compute attention # attn_bias = None # if mask is not None: # attn_bias = xformers.ops.fmha.BlockDiagonalMask.from_seqlens([N] * B, mask) # x = xformers.ops.memory_efficient_attention(q, k, v, p=self.attn_drop.p, attn_bias=attn_bias) # # apply all to all to gather back attention heads and scatter sequence # x = x.view(B, -1, self.num_heads // sp_size, self.head_dim) # x = all_to_all(x, sp_group, scatter_dim=1, gather_dim=2) # # apply output projection # x = x.view(B, -1, C) # x = self.proj(x) # x = self.proj_drop(x) # return x # class FinalLayer(nn.Module): # """ # The final layer of DiT. # """ # def __init__(self, hidden_size, num_patch, out_channels): # super().__init__() # self.norm_final = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6) # self.linear = nn.Linear(hidden_size, num_patch * out_channels, bias=True) # self.adaLN_modulation = nn.Sequential(nn.SiLU(), nn.Linear(hidden_size, 2 * hidden_size, bias=True)) # def forward(self, x, c): # shift, scale = self.adaLN_modulation(c).chunk(2, dim=1) # x = modulate(self.norm_final, x, shift, scale) # x = self.linear(x) # return x # class T2IFinalLayer(nn.Module): # """ # The final layer of PixArt. # """ # def __init__(self, hidden_size, num_patch, out_channels): # super().__init__() # self.norm_final = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6) # self.linear = nn.Linear(hidden_size, num_patch * out_channels, bias=True) # self.scale_shift_table = nn.Parameter(torch.randn(2, hidden_size) / hidden_size**0.5) # self.out_channels = out_channels # def forward(self, x, t): # shift, scale = (self.scale_shift_table[None] + t[:, None]).chunk(2, dim=1) # x = t2i_modulate(self.norm_final(x), shift, scale) # x = self.linear(x) # return x # # =============================================== # # Embedding Layers for Timesteps and Class Labels # # =============================================== # class TimestepEmbedder(nn.Module): # """ # Embeds scalar timesteps into vector representations. # """ # def __init__(self, hidden_size, frequency_embedding_size=256): # super().__init__() # self.mlp = nn.Sequential( # nn.Linear(frequency_embedding_size, hidden_size, bias=True), # nn.SiLU(), # nn.Linear(hidden_size, hidden_size, bias=True), # ) # self.frequency_embedding_size = frequency_embedding_size # @staticmethod # def timestep_embedding(t, dim, max_period=10000): # """ # Create sinusoidal timestep embeddings. # :param t: a 1-D Tensor of N indices, one per batch element. # These may be fractional. # :param dim: the dimension of the output. # :param max_period: controls the minimum frequency of the embeddings. # :return: an (N, D) Tensor of positional embeddings. # """ # # https://github.com/openai/glide-text2im/blob/main/glide_text2im/nn.py # half = dim // 2 # freqs = torch.exp(-math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half) # freqs = freqs.to(device=t.device) # args = t[:, None].float() * freqs[None] # embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1) # if dim % 2: # embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1) # return embedding # def forward(self, t, dtype): # t_freq = self.timestep_embedding(t, self.frequency_embedding_size) # if t_freq.dtype != dtype: # t_freq = t_freq.to(dtype) # t_emb = self.mlp(t_freq) # return t_emb # class LabelEmbedder(nn.Module): # """ # Embeds class labels into vector representations. Also handles label dropout for classifier-free guidance. # """ # def __init__(self, num_classes, hidden_size, dropout_prob): # super().__init__() # use_cfg_embedding = dropout_prob > 0 # self.embedding_table = nn.Embedding(num_classes + use_cfg_embedding, hidden_size) # self.num_classes = num_classes # self.dropout_prob = dropout_prob # def token_drop(self, labels, force_drop_ids=None): # """ # Drops labels to enable classifier-free guidance. # """ # if force_drop_ids is None: # drop_ids = torch.rand(labels.shape[0]).cuda() < self.dropout_prob # else: # drop_ids = force_drop_ids == 1 # labels = torch.where(drop_ids, self.num_classes, labels) # return labels # def forward(self, labels, train, force_drop_ids=None): # use_dropout = self.dropout_prob > 0 # if (train and use_dropout) or (force_drop_ids is not None): # labels = self.token_drop(labels, force_drop_ids) # return self.embedding_table(labels) # class SizeEmbedder(TimestepEmbedder): # """ # Embeds scalar timesteps into vector representations. # """ # def __init__(self, hidden_size, frequency_embedding_size=256): # super().__init__(hidden_size=hidden_size, frequency_embedding_size=frequency_embedding_size) # self.mlp = nn.Sequential( # nn.Linear(frequency_embedding_size, hidden_size, bias=True), # nn.SiLU(), # nn.Linear(hidden_size, hidden_size, bias=True), # ) # self.frequency_embedding_size = frequency_embedding_size # self.outdim = hidden_size # def forward(self, s, bs): # if s.ndim == 1: # s = s[:, None] # assert s.ndim == 2 # if s.shape[0] != bs: # s = s.repeat(bs // s.shape[0], 1) # assert s.shape[0] == bs # b, dims = s.shape[0], s.shape[1] # s = rearrange(s, "b d -> (b d)") # s_freq = self.timestep_embedding(s, self.frequency_embedding_size).to(self.dtype) # s_emb = self.mlp(s_freq) # s_emb = rearrange(s_emb, "(b d) d2 -> b (d d2)", b=b, d=dims, d2=self.outdim) # return s_emb # @property # def dtype(self): # return next(self.parameters()).dtype # class CaptionEmbedder(nn.Module): # """ # Embeds class labels into vector representations. Also handles label dropout for classifier-free guidance. # """ # def __init__(self, in_channels, hidden_size, uncond_prob, act_layer=nn.GELU(approximate="tanh"), token_num=120): # super().__init__() # self.y_proj = Mlp( # in_features=in_channels, hidden_features=hidden_size, out_features=hidden_size, act_layer=act_layer, drop=0 # ) # self.register_buffer("y_embedding", nn.Parameter(torch.randn(token_num, in_channels) / in_channels**0.5)) # self.uncond_prob = uncond_prob # def token_drop(self, caption, force_drop_ids=None): # """ # Drops labels to enable classifier-free guidance. # """ # if force_drop_ids is None: # drop_ids = torch.rand(caption.shape[0]).cuda() < self.uncond_prob # else: # drop_ids = force_drop_ids == 1 # caption = torch.where(drop_ids[:, None, None, None], self.y_embedding, caption) # return caption # def forward(self, caption, train, force_drop_ids=None): # if train: # assert caption.shape[2:] == self.y_embedding.shape # use_dropout = self.uncond_prob > 0 # if (train and use_dropout) or (force_drop_ids is not None): # caption = self.token_drop(caption, force_drop_ids) # caption = self.y_proj(caption) # return caption # # =============================================== # # Sine/Cosine Positional Embedding Functions # # =============================================== # # https://github.com/facebookresearch/mae/blob/main/util/pos_embed.py # def get_2d_sincos_pos_embed(embed_dim, grid_size, cls_token=False, extra_tokens=0, scale=1.0, base_size=None): # """ # grid_size: int of the grid height and width # return: # pos_embed: [grid_size*grid_size, embed_dim] or [1+grid_size*grid_size, embed_dim] (w/ or w/o cls_token) # """ # if not isinstance(grid_size, tuple): # grid_size = (grid_size, grid_size) # grid_h = np.arange(grid_size[0], dtype=np.float32) / scale # grid_w = np.arange(grid_size[1], dtype=np.float32) / scale # if base_size is not None: # grid_h *= base_size / grid_size[0] # grid_w *= base_size / grid_size[1] # grid = np.meshgrid(grid_w, grid_h) # here w goes first # grid = np.stack(grid, axis=0) # grid = grid.reshape([2, 1, grid_size[1], grid_size[0]]) # pos_embed = get_2d_sincos_pos_embed_from_grid(embed_dim, grid) # if cls_token and extra_tokens > 0: # pos_embed = np.concatenate([np.zeros([extra_tokens, embed_dim]), pos_embed], axis=0) # return pos_embed # def get_2d_sincos_pos_embed_from_grid(embed_dim, grid): # assert embed_dim % 2 == 0 # # use half of dimensions to encode grid_h # emb_h = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[0]) # (H*W, D/2) # emb_w = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[1]) # (H*W, D/2) # emb = np.concatenate([emb_h, emb_w], axis=1) # (H*W, D) # return emb # def get_1d_sincos_pos_embed(embed_dim, length, scale=1.0): # pos = np.arange(0, length)[..., None] / scale # return get_1d_sincos_pos_embed_from_grid(embed_dim, pos) # def get_1d_sincos_pos_embed_from_grid(embed_dim, pos): # """ # embed_dim: output dimension for each position # pos: a list of positions to be encoded: size (M,) # out: (M, D) # """ # assert embed_dim % 2 == 0 # omega = np.arange(embed_dim // 2, dtype=np.float64) # omega /= embed_dim / 2.0 # omega = 1.0 / 10000**omega # (D/2,) # pos = pos.reshape(-1) # (M,) # out = np.einsum("m,d->md", pos, omega) # (M, D/2), outer product # emb_sin = np.sin(out) # (M, D/2) # emb_cos = np.cos(out) # (M, D/2) # emb = np.concatenate([emb_sin, emb_cos], axis=1) # (M, D) # return emb