import torch import torch.nn as nn from einops import rearrange import torch.nn.functional as F class Mish(torch.nn.Module): def forward(self, hidden_states): return hidden_states * torch.tanh(torch.nn.functional.softplus(hidden_states)) class InflatedConv3d(nn.Conv2d): def forward(self, x): video_length = x.shape[2] x = rearrange(x, "b c t h w -> (b t) c h w") x = super().forward(x) x = rearrange(x, "(b t) c h w -> b c t h w", t=video_length) return x class ResnetBlock3D(nn.Module): def __init__( self, *, in_channels, out_channels=None, conv_shortcut=False, dropout=0.0, temb_channels=512, groups=16, groups_out=None, pre_norm=True, eps=1e-6, non_linearity="swish", time_embedding_norm="default", output_scale_factor=1.0, use_in_shortcut=None, ): super().__init__() self.pre_norm = pre_norm self.pre_norm = True self.in_channels = in_channels out_channels = in_channels if out_channels is None else out_channels self.out_channels = out_channels self.use_conv_shortcut = conv_shortcut self.time_embedding_norm = time_embedding_norm self.output_scale_factor = output_scale_factor if groups_out is None: groups_out = groups self.norm1 = torch.nn.GroupNorm(num_groups=groups, num_channels=in_channels, eps=eps, affine=True) self.conv1 = InflatedConv3d(in_channels, out_channels, kernel_size=3, stride=1, padding=1) if temb_channels is not None: if self.time_embedding_norm == "default": time_emb_proj_out_channels = out_channels elif self.time_embedding_norm == "scale_shift": time_emb_proj_out_channels = out_channels * 2 else: raise ValueError(f"unknown time_embedding_norm : {self.time_embedding_norm} ") self.time_emb_proj = torch.nn.Linear(temb_channels, time_emb_proj_out_channels) else: self.time_emb_proj = None self.norm2 = torch.nn.GroupNorm(num_groups=groups_out, num_channels=out_channels, eps=eps, affine=True) self.dropout = torch.nn.Dropout(dropout) self.conv2 = InflatedConv3d(out_channels, out_channels, kernel_size=3, stride=1, padding=1) if non_linearity == "swish": self.nonlinearity = lambda x: F.silu(x) elif non_linearity == "mish": self.nonlinearity = Mish() elif non_linearity == "silu": self.nonlinearity = nn.SiLU() self.use_in_shortcut = self.in_channels != self.out_channels if use_in_shortcut is None else use_in_shortcut self.conv_shortcut = None if self.use_in_shortcut: self.conv_shortcut = InflatedConv3d(in_channels, out_channels, kernel_size=1, stride=1, padding=0) def forward(self, input_tensor, temb=None): hidden_states = input_tensor hidden_states = self.norm1(hidden_states) hidden_states = self.nonlinearity(hidden_states) hidden_states = self.conv1(hidden_states) if temb is not None: temb = self.time_emb_proj(self.nonlinearity(temb))[:, :, None, None, None] if temb is not None and self.time_embedding_norm == "default": hidden_states = hidden_states + temb hidden_states = self.norm2(hidden_states) if temb is not None and self.time_embedding_norm == "scale_shift": scale, shift = torch.chunk(temb, 2, dim=1) hidden_states = hidden_states * (1 + scale) + shift hidden_states = self.nonlinearity(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.conv2(hidden_states) if self.conv_shortcut is not None: input_tensor = self.conv_shortcut(input_tensor) output_tensor = (input_tensor + hidden_states) / self.output_scale_factor return output_tensor class Fuse_sft_block(nn.Module): def __init__(self, enc_ch, dec_ch): super().__init__() self.shared = nn.Sequential( ResnetBlock3D(in_channels=enc_ch+dec_ch, out_channels=dec_ch, temb_channels=None), ResnetBlock3D(in_channels=dec_ch, out_channels=dec_ch, temb_channels=None) ) self.scale = nn.Conv3d(dec_ch, dec_ch, 3, 1, 1) # InflatedConv3d(dec_ch, dec_ch, 3, 1, 1) self.shift = nn.Conv3d(dec_ch, dec_ch, 3, 1, 1) # InflatedConv3d(dec_ch, dec_ch, 3, 1, 1) def forward(self, enc_feat, dec_feat, w=1): enc_feat = self.shared(torch.cat([enc_feat, dec_feat], dim=1)) scale = self.scale(enc_feat) shift = self.shift(enc_feat) residual = w * (dec_feat * scale + shift) out = dec_feat + residual return out if __name__ == "__main__": block = Fuse_sft_block(16, 16) enc_feat = torch.randn(1, 16, 4, 60, 90) dec_feat = torch.randn(1, 16, 4, 60, 90) out = block(enc_feat, dec_feat) print(out.shape)