Commit f8a59619 authored by lijian6's avatar lijian6
Browse files

change for running in dtk24.04.1


Signed-off-by: lijian6's avatarlijian <lijian6@sugon.com>
parent 1439c5da
model:
base_learning_rate: 2.0e-06
target: ldm.models.diffusion.ddpm.LatentDiffusion
params:
linear_start: 0.0015
linear_end: 0.0195
num_timesteps_cond: 1
log_every_t: 200
timesteps: 1000
first_stage_key: image
image_size: 64
channels: 3
monitor: val/loss_simple_ema
unet_config:
target: ldm.modules.diffusionmodules.openaimodel.UNetModel
params:
image_size: 64
in_channels: 3
out_channels: 3
model_channels: 224
attention_resolutions:
# note: this isn\t actually the resolution but
# the downsampling factor, i.e. this corresnponds to
# attention on spatial resolution 8,16,32, as the
# spatial reolution of the latents is 64 for f4
- 8
- 4
- 2
num_res_blocks: 2
channel_mult:
- 1
- 2
- 3
- 4
num_head_channels: 32
first_stage_config:
target: ldm.models.autoencoder.VQModelInterface
params:
embed_dim: 3
n_embed: 8192
ckpt_path: configs/first_stage_models/vq-f4/model.yaml
ddconfig:
double_z: false
z_channels: 3
resolution: 256
in_channels: 3
out_ch: 3
ch: 128
ch_mult:
- 1
- 2
- 4
num_res_blocks: 2
attn_resolutions: []
dropout: 0.0
lossconfig:
target: torch.nn.Identity
cond_stage_config: __is_unconditional__
data:
target: main.DataModuleFromConfig
params:
batch_size: 42
num_workers: 5
wrap: false
train:
target: taming.data.faceshq.FFHQTrain
params:
size: 256
validation:
target: taming.data.faceshq.FFHQValidation
params:
size: 256
lightning:
callbacks:
image_logger:
target: main.ImageLogger
params:
batch_frequency: 5000
max_images: 8
increase_log_steps: False
trainer:
benchmark: True
\ No newline at end of file
model:
base_learning_rate: 2.0e-06
target: ldm.models.diffusion.ddpm.LatentDiffusion
params:
linear_start: 0.0015
linear_end: 0.0195
num_timesteps_cond: 1
log_every_t: 200
timesteps: 1000
first_stage_key: image
image_size: 64
channels: 3
monitor: val/loss_simple_ema
unet_config:
target: ldm.modules.diffusionmodules.openaimodel.UNetModel
params:
image_size: 64
in_channels: 3
out_channels: 3
model_channels: 224
attention_resolutions:
# note: this isn\t actually the resolution but
# the downsampling factor, i.e. this corresnponds to
# attention on spatial resolution 8,16,32, as the
# spatial reolution of the latents is 64 for f4
- 8
- 4
- 2
num_res_blocks: 2
channel_mult:
- 1
- 2
- 3
- 4
num_head_channels: 32
first_stage_config:
target: ldm.models.autoencoder.VQModelInterface
params:
ckpt_path: configs/first_stage_models/vq-f4/model.yaml
embed_dim: 3
n_embed: 8192
ddconfig:
double_z: false
z_channels: 3
resolution: 256
in_channels: 3
out_ch: 3
ch: 128
ch_mult:
- 1
- 2
- 4
num_res_blocks: 2
attn_resolutions: []
dropout: 0.0
lossconfig:
target: torch.nn.Identity
cond_stage_config: __is_unconditional__
data:
target: main.DataModuleFromConfig
params:
batch_size: 48
num_workers: 5
wrap: false
train:
target: ldm.data.lsun.LSUNBedroomsTrain
params:
size: 256
validation:
target: ldm.data.lsun.LSUNBedroomsValidation
params:
size: 256
lightning:
callbacks:
image_logger:
target: main.ImageLogger
params:
batch_frequency: 5000
max_images: 8
increase_log_steps: False
trainer:
benchmark: True
\ No newline at end of file
model:
base_learning_rate: 5.0e-5 # set to target_lr by starting main.py with '--scale_lr False'
target: ldm.models.diffusion.ddpm.LatentDiffusion
params:
linear_start: 0.0015
linear_end: 0.0155
num_timesteps_cond: 1
log_every_t: 200
timesteps: 1000
loss_type: l1
first_stage_key: "image"
cond_stage_key: "image"
image_size: 32
channels: 4
cond_stage_trainable: False
concat_mode: False
scale_by_std: True
monitor: 'val/loss_simple_ema'
scheduler_config: # 10000 warmup steps
target: ldm.lr_scheduler.LambdaLinearScheduler
params:
warm_up_steps: [10000]
cycle_lengths: [10000000000000]
f_start: [1.e-6]
f_max: [1.]
f_min: [ 1.]
unet_config:
target: ldm.modules.diffusionmodules.openaimodel.UNetModel
params:
image_size: 32
in_channels: 4
out_channels: 4
model_channels: 192
attention_resolutions: [ 1, 2, 4, 8 ] # 32, 16, 8, 4
num_res_blocks: 2
channel_mult: [ 1,2,2,4,4 ] # 32, 16, 8, 4, 2
num_heads: 8
use_scale_shift_norm: True
resblock_updown: True
first_stage_config:
target: ldm.models.autoencoder.AutoencoderKL
params:
embed_dim: 4
monitor: "val/rec_loss"
ckpt_path: "models/first_stage_models/kl-f8/model.ckpt"
ddconfig:
double_z: True
z_channels: 4
resolution: 256
in_channels: 3
out_ch: 3
ch: 128
ch_mult: [ 1,2,4,4 ] # num_down = len(ch_mult)-1
num_res_blocks: 2
attn_resolutions: [ ]
dropout: 0.0
lossconfig:
target: torch.nn.Identity
cond_stage_config: "__is_unconditional__"
data:
target: main.DataModuleFromConfig
params:
batch_size: 96
num_workers: 5
wrap: False
train:
target: ldm.data.lsun.LSUNChurchesTrain
params:
size: 256
validation:
target: ldm.data.lsun.LSUNChurchesValidation
params:
size: 256
lightning:
callbacks:
image_logger:
target: main.ImageLogger
params:
batch_frequency: 5000
max_images: 8
increase_log_steps: False
trainer:
benchmark: True
\ No newline at end of file
model:
base_learning_rate: 5.0e-05
target: ldm.models.diffusion.ddpm.LatentDiffusion
params:
linear_start: 0.00085
linear_end: 0.012
num_timesteps_cond: 1
log_every_t: 200
timesteps: 1000
first_stage_key: image
cond_stage_key: caption
image_size: 32
channels: 4
cond_stage_trainable: true
conditioning_key: crossattn
monitor: val/loss_simple_ema
scale_factor: 0.18215
use_ema: False
unet_config:
target: ldm.modules.diffusionmodules.openaimodel.UNetModel
params:
image_size: 32
in_channels: 4
out_channels: 4
model_channels: 320
attention_resolutions:
- 4
- 2
- 1
num_res_blocks: 2
channel_mult:
- 1
- 2
- 4
- 4
num_heads: 8
use_spatial_transformer: true
transformer_depth: 1
context_dim: 1280
use_checkpoint: true
legacy: False
first_stage_config:
target: ldm.models.autoencoder.AutoencoderKL
params:
embed_dim: 4
monitor: val/rec_loss
ddconfig:
double_z: true
z_channels: 4
resolution: 256
in_channels: 3
out_ch: 3
ch: 128
ch_mult:
- 1
- 2
- 4
- 4
num_res_blocks: 2
attn_resolutions: []
dropout: 0.0
lossconfig:
target: torch.nn.Identity
cond_stage_config:
target: ldm.modules.encoders.modules.BERTEmbedder
params:
n_embed: 1280
n_layer: 32
model:
base_learning_rate: 0.0001
target: ldm.models.diffusion.ddpm.LatentDiffusion
params:
linear_start: 0.0015
linear_end: 0.015
num_timesteps_cond: 1
log_every_t: 200
timesteps: 1000
first_stage_key: jpg
cond_stage_key: nix
image_size: 48
channels: 16
cond_stage_trainable: false
conditioning_key: crossattn
monitor: val/loss_simple_ema
scale_by_std: false
scale_factor: 0.22765929
unet_config:
target: ldm.modules.diffusionmodules.openaimodel.UNetModel
params:
image_size: 48
in_channels: 16
out_channels: 16
model_channels: 448
attention_resolutions:
- 4
- 2
- 1
num_res_blocks: 2
channel_mult:
- 1
- 2
- 3
- 4
use_scale_shift_norm: false
resblock_updown: false
num_head_channels: 32
use_spatial_transformer: true
transformer_depth: 1
context_dim: 768
use_checkpoint: true
first_stage_config:
target: ldm.models.autoencoder.AutoencoderKL
params:
monitor: val/rec_loss
embed_dim: 16
ddconfig:
double_z: true
z_channels: 16
resolution: 256
in_channels: 3
out_ch: 3
ch: 128
ch_mult:
- 1
- 1
- 2
- 2
- 4
num_res_blocks: 2
attn_resolutions:
- 16
dropout: 0.0
lossconfig:
target: torch.nn.Identity
cond_stage_config:
target: torch.nn.Identity
\ No newline at end of file
model:
base_learning_rate: 1.0e-04
target: ldm.models.diffusion.ddpm.LatentDiffusion
params:
linear_start: 0.00085
linear_end: 0.0120
num_timesteps_cond: 1
log_every_t: 200
timesteps: 1000
first_stage_key: "jpg"
cond_stage_key: "txt"
image_size: 64
channels: 4
cond_stage_trainable: false # Note: different from the one we trained before
conditioning_key: crossattn
monitor: val/loss_simple_ema
scale_factor: 0.18215
use_ema: False
scheduler_config: # 10000 warmup steps
target: ldm.lr_scheduler.LambdaLinearScheduler
params:
warm_up_steps: [ 10000 ]
cycle_lengths: [ 10000000000000 ] # incredibly large number to prevent corner cases
f_start: [ 1.e-6 ]
f_max: [ 1. ]
f_min: [ 1. ]
unet_config:
target: ldm.modules.diffusionmodules.openaimodel.UNetModel
params:
image_size: 32 # unused
in_channels: 4
out_channels: 4
model_channels: 320
attention_resolutions: [ 4, 2, 1 ]
num_res_blocks: 2
channel_mult: [ 1, 2, 4, 4 ]
num_heads: 8
use_spatial_transformer: True
transformer_depth: 1
context_dim: 768
use_checkpoint: True
legacy: False
first_stage_config:
target: ldm.models.autoencoder.AutoencoderKL
params:
embed_dim: 4
monitor: val/rec_loss
ddconfig:
double_z: true
z_channels: 4
resolution: 256
in_channels: 3
out_ch: 3
ch: 128
ch_mult:
- 1
- 2
- 4
- 4
num_res_blocks: 2
attn_resolutions: []
dropout: 0.0
lossconfig:
target: torch.nn.Identity
cond_stage_config:
target: ldm.modules.encoders.modules.FrozenCLIPEmbedder
0: 'tench, Tinca tinca',
1: 'goldfish, Carassius auratus',
2: 'great white shark, white shark, man-eater, man-eating shark, Carcharodon carcharias',
3: 'tiger shark, Galeocerdo cuvieri',
4: 'hammerhead, hammerhead shark',
5: 'electric ray, crampfish, numbfish, torpedo',
6: 'stingray',
7: 'cock',
8: 'hen',
9: 'ostrich, Struthio camelus',
10: 'brambling, Fringilla montifringilla',
11: 'goldfinch, Carduelis carduelis',
12: 'house finch, linnet, Carpodacus mexicanus',
13: 'junco, snowbird',
14: 'indigo bunting, indigo finch, indigo bird, Passerina cyanea',
15: 'robin, American robin, Turdus migratorius',
16: 'bulbul',
17: 'jay',
18: 'magpie',
19: 'chickadee',
20: 'water ouzel, dipper',
21: 'kite',
22: 'bald eagle, American eagle, Haliaeetus leucocephalus',
23: 'vulture',
24: 'great grey owl, great gray owl, Strix nebulosa',
25: 'European fire salamander, Salamandra salamandra',
26: 'common newt, Triturus vulgaris',
27: 'eft',
28: 'spotted salamander, Ambystoma maculatum',
29: 'axolotl, mud puppy, Ambystoma mexicanum',
30: 'bullfrog, Rana catesbeiana',
31: 'tree frog, tree-frog',
32: 'tailed frog, bell toad, ribbed toad, tailed toad, Ascaphus trui',
33: 'loggerhead, loggerhead turtle, Caretta caretta',
34: 'leatherback turtle, leatherback, leathery turtle, Dermochelys coriacea',
35: 'mud turtle',
36: 'terrapin',
37: 'box turtle, box tortoise',
38: 'banded gecko',
39: 'common iguana, iguana, Iguana iguana',
40: 'American chameleon, anole, Anolis carolinensis',
41: 'whiptail, whiptail lizard',
42: 'agama',
43: 'frilled lizard, Chlamydosaurus kingi',
44: 'alligator lizard',
45: 'Gila monster, Heloderma suspectum',
46: 'green lizard, Lacerta viridis',
47: 'African chameleon, Chamaeleo chamaeleon',
48: 'Komodo dragon, Komodo lizard, dragon lizard, giant lizard, Varanus komodoensis',
49: 'African crocodile, Nile crocodile, Crocodylus niloticus',
50: 'American alligator, Alligator mississipiensis',
51: 'triceratops',
52: 'thunder snake, worm snake, Carphophis amoenus',
53: 'ringneck snake, ring-necked snake, ring snake',
54: 'hognose snake, puff adder, sand viper',
55: 'green snake, grass snake',
56: 'king snake, kingsnake',
57: 'garter snake, grass snake',
58: 'water snake',
59: 'vine snake',
60: 'night snake, Hypsiglena torquata',
61: 'boa constrictor, Constrictor constrictor',
62: 'rock python, rock snake, Python sebae',
63: 'Indian cobra, Naja naja',
64: 'green mamba',
65: 'sea snake',
66: 'horned viper, cerastes, sand viper, horned asp, Cerastes cornutus',
67: 'diamondback, diamondback rattlesnake, Crotalus adamanteus',
68: 'sidewinder, horned rattlesnake, Crotalus cerastes',
69: 'trilobite',
70: 'harvestman, daddy longlegs, Phalangium opilio',
71: 'scorpion',
72: 'black and gold garden spider, Argiope aurantia',
73: 'barn spider, Araneus cavaticus',
74: 'garden spider, Aranea diademata',
75: 'black widow, Latrodectus mactans',
76: 'tarantula',
77: 'wolf spider, hunting spider',
78: 'tick',
79: 'centipede',
80: 'black grouse',
81: 'ptarmigan',
82: 'ruffed grouse, partridge, Bonasa umbellus',
83: 'prairie chicken, prairie grouse, prairie fowl',
84: 'peacock',
85: 'quail',
86: 'partridge',
87: 'African grey, African gray, Psittacus erithacus',
88: 'macaw',
89: 'sulphur-crested cockatoo, Kakatoe galerita, Cacatua galerita',
90: 'lorikeet',
91: 'coucal',
92: 'bee eater',
93: 'hornbill',
94: 'hummingbird',
95: 'jacamar',
96: 'toucan',
97: 'drake',
98: 'red-breasted merganser, Mergus serrator',
99: 'goose',
100: 'black swan, Cygnus atratus',
101: 'tusker',
102: 'echidna, spiny anteater, anteater',
103: 'platypus, duckbill, duckbilled platypus, duck-billed platypus, Ornithorhynchus anatinus',
104: 'wallaby, brush kangaroo',
105: 'koala, koala bear, kangaroo bear, native bear, Phascolarctos cinereus',
106: 'wombat',
107: 'jellyfish',
108: 'sea anemone, anemone',
109: 'brain coral',
110: 'flatworm, platyhelminth',
111: 'nematode, nematode worm, roundworm',
112: 'conch',
113: 'snail',
114: 'slug',
115: 'sea slug, nudibranch',
116: 'chiton, coat-of-mail shell, sea cradle, polyplacophore',
117: 'chambered nautilus, pearly nautilus, nautilus',
118: 'Dungeness crab, Cancer magister',
119: 'rock crab, Cancer irroratus',
120: 'fiddler crab',
121: 'king crab, Alaska crab, Alaskan king crab, Alaska king crab, Paralithodes camtschatica',
122: 'American lobster, Northern lobster, Maine lobster, Homarus americanus',
123: 'spiny lobster, langouste, rock lobster, crawfish, crayfish, sea crawfish',
124: 'crayfish, crawfish, crawdad, crawdaddy',
125: 'hermit crab',
126: 'isopod',
127: 'white stork, Ciconia ciconia',
128: 'black stork, Ciconia nigra',
129: 'spoonbill',
130: 'flamingo',
131: 'little blue heron, Egretta caerulea',
132: 'American egret, great white heron, Egretta albus',
133: 'bittern',
134: 'crane',
135: 'limpkin, Aramus pictus',
136: 'European gallinule, Porphyrio porphyrio',
137: 'American coot, marsh hen, mud hen, water hen, Fulica americana',
138: 'bustard',
139: 'ruddy turnstone, Arenaria interpres',
140: 'red-backed sandpiper, dunlin, Erolia alpina',
141: 'redshank, Tringa totanus',
142: 'dowitcher',
143: 'oystercatcher, oyster catcher',
144: 'pelican',
145: 'king penguin, Aptenodytes patagonica',
146: 'albatross, mollymawk',
147: 'grey whale, gray whale, devilfish, Eschrichtius gibbosus, Eschrichtius robustus',
148: 'killer whale, killer, orca, grampus, sea wolf, Orcinus orca',
149: 'dugong, Dugong dugon',
150: 'sea lion',
151: 'Chihuahua',
152: 'Japanese spaniel',
153: 'Maltese dog, Maltese terrier, Maltese',
154: 'Pekinese, Pekingese, Peke',
155: 'Shih-Tzu',
156: 'Blenheim spaniel',
157: 'papillon',
158: 'toy terrier',
159: 'Rhodesian ridgeback',
160: 'Afghan hound, Afghan',
161: 'basset, basset hound',
162: 'beagle',
163: 'bloodhound, sleuthhound',
164: 'bluetick',
165: 'black-and-tan coonhound',
166: 'Walker hound, Walker foxhound',
167: 'English foxhound',
168: 'redbone',
169: 'borzoi, Russian wolfhound',
170: 'Irish wolfhound',
171: 'Italian greyhound',
172: 'whippet',
173: 'Ibizan hound, Ibizan Podenco',
174: 'Norwegian elkhound, elkhound',
175: 'otterhound, otter hound',
176: 'Saluki, gazelle hound',
177: 'Scottish deerhound, deerhound',
178: 'Weimaraner',
179: 'Staffordshire bullterrier, Staffordshire bull terrier',
180: 'American Staffordshire terrier, Staffordshire terrier, American pit bull terrier, pit bull terrier',
181: 'Bedlington terrier',
182: 'Border terrier',
183: 'Kerry blue terrier',
184: 'Irish terrier',
185: 'Norfolk terrier',
186: 'Norwich terrier',
187: 'Yorkshire terrier',
188: 'wire-haired fox terrier',
189: 'Lakeland terrier',
190: 'Sealyham terrier, Sealyham',
191: 'Airedale, Airedale terrier',
192: 'cairn, cairn terrier',
193: 'Australian terrier',
194: 'Dandie Dinmont, Dandie Dinmont terrier',
195: 'Boston bull, Boston terrier',
196: 'miniature schnauzer',
197: 'giant schnauzer',
198: 'standard schnauzer',
199: 'Scotch terrier, Scottish terrier, Scottie',
200: 'Tibetan terrier, chrysanthemum dog',
201: 'silky terrier, Sydney silky',
202: 'soft-coated wheaten terrier',
203: 'West Highland white terrier',
204: 'Lhasa, Lhasa apso',
205: 'flat-coated retriever',
206: 'curly-coated retriever',
207: 'golden retriever',
208: 'Labrador retriever',
209: 'Chesapeake Bay retriever',
210: 'German short-haired pointer',
211: 'vizsla, Hungarian pointer',
212: 'English setter',
213: 'Irish setter, red setter',
214: 'Gordon setter',
215: 'Brittany spaniel',
216: 'clumber, clumber spaniel',
217: 'English springer, English springer spaniel',
218: 'Welsh springer spaniel',
219: 'cocker spaniel, English cocker spaniel, cocker',
220: 'Sussex spaniel',
221: 'Irish water spaniel',
222: 'kuvasz',
223: 'schipperke',
224: 'groenendael',
225: 'malinois',
226: 'briard',
227: 'kelpie',
228: 'komondor',
229: 'Old English sheepdog, bobtail',
230: 'Shetland sheepdog, Shetland sheep dog, Shetland',
231: 'collie',
232: 'Border collie',
233: 'Bouvier des Flandres, Bouviers des Flandres',
234: 'Rottweiler',
235: 'German shepherd, German shepherd dog, German police dog, alsatian',
236: 'Doberman, Doberman pinscher',
237: 'miniature pinscher',
238: 'Greater Swiss Mountain dog',
239: 'Bernese mountain dog',
240: 'Appenzeller',
241: 'EntleBucher',
242: 'boxer',
243: 'bull mastiff',
244: 'Tibetan mastiff',
245: 'French bulldog',
246: 'Great Dane',
247: 'Saint Bernard, St Bernard',
248: 'Eskimo dog, husky',
249: 'malamute, malemute, Alaskan malamute',
250: 'Siberian husky',
251: 'dalmatian, coach dog, carriage dog',
252: 'affenpinscher, monkey pinscher, monkey dog',
253: 'basenji',
254: 'pug, pug-dog',
255: 'Leonberg',
256: 'Newfoundland, Newfoundland dog',
257: 'Great Pyrenees',
258: 'Samoyed, Samoyede',
259: 'Pomeranian',
260: 'chow, chow chow',
261: 'keeshond',
262: 'Brabancon griffon',
263: 'Pembroke, Pembroke Welsh corgi',
264: 'Cardigan, Cardigan Welsh corgi',
265: 'toy poodle',
266: 'miniature poodle',
267: 'standard poodle',
268: 'Mexican hairless',
269: 'timber wolf, grey wolf, gray wolf, Canis lupus',
270: 'white wolf, Arctic wolf, Canis lupus tundrarum',
271: 'red wolf, maned wolf, Canis rufus, Canis niger',
272: 'coyote, prairie wolf, brush wolf, Canis latrans',
273: 'dingo, warrigal, warragal, Canis dingo',
274: 'dhole, Cuon alpinus',
275: 'African hunting dog, hyena dog, Cape hunting dog, Lycaon pictus',
276: 'hyena, hyaena',
277: 'red fox, Vulpes vulpes',
278: 'kit fox, Vulpes macrotis',
279: 'Arctic fox, white fox, Alopex lagopus',
280: 'grey fox, gray fox, Urocyon cinereoargenteus',
281: 'tabby, tabby cat',
282: 'tiger cat',
283: 'Persian cat',
284: 'Siamese cat, Siamese',
285: 'Egyptian cat',
286: 'cougar, puma, catamount, mountain lion, painter, panther, Felis concolor',
287: 'lynx, catamount',
288: 'leopard, Panthera pardus',
289: 'snow leopard, ounce, Panthera uncia',
290: 'jaguar, panther, Panthera onca, Felis onca',
291: 'lion, king of beasts, Panthera leo',
292: 'tiger, Panthera tigris',
293: 'cheetah, chetah, Acinonyx jubatus',
294: 'brown bear, bruin, Ursus arctos',
295: 'American black bear, black bear, Ursus americanus, Euarctos americanus',
296: 'ice bear, polar bear, Ursus Maritimus, Thalarctos maritimus',
297: 'sloth bear, Melursus ursinus, Ursus ursinus',
298: 'mongoose',
299: 'meerkat, mierkat',
300: 'tiger beetle',
301: 'ladybug, ladybeetle, lady beetle, ladybird, ladybird beetle',
302: 'ground beetle, carabid beetle',
303: 'long-horned beetle, longicorn, longicorn beetle',
304: 'leaf beetle, chrysomelid',
305: 'dung beetle',
306: 'rhinoceros beetle',
307: 'weevil',
308: 'fly',
309: 'bee',
310: 'ant, emmet, pismire',
311: 'grasshopper, hopper',
312: 'cricket',
313: 'walking stick, walkingstick, stick insect',
314: 'cockroach, roach',
315: 'mantis, mantid',
316: 'cicada, cicala',
317: 'leafhopper',
318: 'lacewing, lacewing fly',
319: "dragonfly, darning needle, devil's darning needle, sewing needle, snake feeder, snake doctor, mosquito hawk, skeeter hawk",
320: 'damselfly',
321: 'admiral',
322: 'ringlet, ringlet butterfly',
323: 'monarch, monarch butterfly, milkweed butterfly, Danaus plexippus',
324: 'cabbage butterfly',
325: 'sulphur butterfly, sulfur butterfly',
326: 'lycaenid, lycaenid butterfly',
327: 'starfish, sea star',
328: 'sea urchin',
329: 'sea cucumber, holothurian',
330: 'wood rabbit, cottontail, cottontail rabbit',
331: 'hare',
332: 'Angora, Angora rabbit',
333: 'hamster',
334: 'porcupine, hedgehog',
335: 'fox squirrel, eastern fox squirrel, Sciurus niger',
336: 'marmot',
337: 'beaver',
338: 'guinea pig, Cavia cobaya',
339: 'sorrel',
340: 'zebra',
341: 'hog, pig, grunter, squealer, Sus scrofa',
342: 'wild boar, boar, Sus scrofa',
343: 'warthog',
344: 'hippopotamus, hippo, river horse, Hippopotamus amphibius',
345: 'ox',
346: 'water buffalo, water ox, Asiatic buffalo, Bubalus bubalis',
347: 'bison',
348: 'ram, tup',
349: 'bighorn, bighorn sheep, cimarron, Rocky Mountain bighorn, Rocky Mountain sheep, Ovis canadensis',
350: 'ibex, Capra ibex',
351: 'hartebeest',
352: 'impala, Aepyceros melampus',
353: 'gazelle',
354: 'Arabian camel, dromedary, Camelus dromedarius',
355: 'llama',
356: 'weasel',
357: 'mink',
358: 'polecat, fitch, foulmart, foumart, Mustela putorius',
359: 'black-footed ferret, ferret, Mustela nigripes',
360: 'otter',
361: 'skunk, polecat, wood pussy',
362: 'badger',
363: 'armadillo',
364: 'three-toed sloth, ai, Bradypus tridactylus',
365: 'orangutan, orang, orangutang, Pongo pygmaeus',
366: 'gorilla, Gorilla gorilla',
367: 'chimpanzee, chimp, Pan troglodytes',
368: 'gibbon, Hylobates lar',
369: 'siamang, Hylobates syndactylus, Symphalangus syndactylus',
370: 'guenon, guenon monkey',
371: 'patas, hussar monkey, Erythrocebus patas',
372: 'baboon',
373: 'macaque',
374: 'langur',
375: 'colobus, colobus monkey',
376: 'proboscis monkey, Nasalis larvatus',
377: 'marmoset',
378: 'capuchin, ringtail, Cebus capucinus',
379: 'howler monkey, howler',
380: 'titi, titi monkey',
381: 'spider monkey, Ateles geoffroyi',
382: 'squirrel monkey, Saimiri sciureus',
383: 'Madagascar cat, ring-tailed lemur, Lemur catta',
384: 'indri, indris, Indri indri, Indri brevicaudatus',
385: 'Indian elephant, Elephas maximus',
386: 'African elephant, Loxodonta africana',
387: 'lesser panda, red panda, panda, bear cat, cat bear, Ailurus fulgens',
388: 'giant panda, panda, panda bear, coon bear, Ailuropoda melanoleuca',
389: 'barracouta, snoek',
390: 'eel',
391: 'coho, cohoe, coho salmon, blue jack, silver salmon, Oncorhynchus kisutch',
392: 'rock beauty, Holocanthus tricolor',
393: 'anemone fish',
394: 'sturgeon',
395: 'gar, garfish, garpike, billfish, Lepisosteus osseus',
396: 'lionfish',
397: 'puffer, pufferfish, blowfish, globefish',
398: 'abacus',
399: 'abaya',
400: "academic gown, academic robe, judge's robe",
401: 'accordion, piano accordion, squeeze box',
402: 'acoustic guitar',
403: 'aircraft carrier, carrier, flattop, attack aircraft carrier',
404: 'airliner',
405: 'airship, dirigible',
406: 'altar',
407: 'ambulance',
408: 'amphibian, amphibious vehicle',
409: 'analog clock',
410: 'apiary, bee house',
411: 'apron',
412: 'ashcan, trash can, garbage can, wastebin, ash bin, ash-bin, ashbin, dustbin, trash barrel, trash bin',
413: 'assault rifle, assault gun',
414: 'backpack, back pack, knapsack, packsack, rucksack, haversack',
415: 'bakery, bakeshop, bakehouse',
416: 'balance beam, beam',
417: 'balloon',
418: 'ballpoint, ballpoint pen, ballpen, Biro',
419: 'Band Aid',
420: 'banjo',
421: 'bannister, banister, balustrade, balusters, handrail',
422: 'barbell',
423: 'barber chair',
424: 'barbershop',
425: 'barn',
426: 'barometer',
427: 'barrel, cask',
428: 'barrow, garden cart, lawn cart, wheelbarrow',
429: 'baseball',
430: 'basketball',
431: 'bassinet',
432: 'bassoon',
433: 'bathing cap, swimming cap',
434: 'bath towel',
435: 'bathtub, bathing tub, bath, tub',
436: 'beach wagon, station wagon, wagon, estate car, beach waggon, station waggon, waggon',
437: 'beacon, lighthouse, beacon light, pharos',
438: 'beaker',
439: 'bearskin, busby, shako',
440: 'beer bottle',
441: 'beer glass',
442: 'bell cote, bell cot',
443: 'bib',
444: 'bicycle-built-for-two, tandem bicycle, tandem',
445: 'bikini, two-piece',
446: 'binder, ring-binder',
447: 'binoculars, field glasses, opera glasses',
448: 'birdhouse',
449: 'boathouse',
450: 'bobsled, bobsleigh, bob',
451: 'bolo tie, bolo, bola tie, bola',
452: 'bonnet, poke bonnet',
453: 'bookcase',
454: 'bookshop, bookstore, bookstall',
455: 'bottlecap',
456: 'bow',
457: 'bow tie, bow-tie, bowtie',
458: 'brass, memorial tablet, plaque',
459: 'brassiere, bra, bandeau',
460: 'breakwater, groin, groyne, mole, bulwark, seawall, jetty',
461: 'breastplate, aegis, egis',
462: 'broom',
463: 'bucket, pail',
464: 'buckle',
465: 'bulletproof vest',
466: 'bullet train, bullet',
467: 'butcher shop, meat market',
468: 'cab, hack, taxi, taxicab',
469: 'caldron, cauldron',
470: 'candle, taper, wax light',
471: 'cannon',
472: 'canoe',
473: 'can opener, tin opener',
474: 'cardigan',
475: 'car mirror',
476: 'carousel, carrousel, merry-go-round, roundabout, whirligig',
477: "carpenter's kit, tool kit",
478: 'carton',
479: 'car wheel',
480: 'cash machine, cash dispenser, automated teller machine, automatic teller machine, automated teller, automatic teller, ATM',
481: 'cassette',
482: 'cassette player',
483: 'castle',
484: 'catamaran',
485: 'CD player',
486: 'cello, violoncello',
487: 'cellular telephone, cellular phone, cellphone, cell, mobile phone',
488: 'chain',
489: 'chainlink fence',
490: 'chain mail, ring mail, mail, chain armor, chain armour, ring armor, ring armour',
491: 'chain saw, chainsaw',
492: 'chest',
493: 'chiffonier, commode',
494: 'chime, bell, gong',
495: 'china cabinet, china closet',
496: 'Christmas stocking',
497: 'church, church building',
498: 'cinema, movie theater, movie theatre, movie house, picture palace',
499: 'cleaver, meat cleaver, chopper',
500: 'cliff dwelling',
501: 'cloak',
502: 'clog, geta, patten, sabot',
503: 'cocktail shaker',
504: 'coffee mug',
505: 'coffeepot',
506: 'coil, spiral, volute, whorl, helix',
507: 'combination lock',
508: 'computer keyboard, keypad',
509: 'confectionery, confectionary, candy store',
510: 'container ship, containership, container vessel',
511: 'convertible',
512: 'corkscrew, bottle screw',
513: 'cornet, horn, trumpet, trump',
514: 'cowboy boot',
515: 'cowboy hat, ten-gallon hat',
516: 'cradle',
517: 'crane',
518: 'crash helmet',
519: 'crate',
520: 'crib, cot',
521: 'Crock Pot',
522: 'croquet ball',
523: 'crutch',
524: 'cuirass',
525: 'dam, dike, dyke',
526: 'desk',
527: 'desktop computer',
528: 'dial telephone, dial phone',
529: 'diaper, nappy, napkin',
530: 'digital clock',
531: 'digital watch',
532: 'dining table, board',
533: 'dishrag, dishcloth',
534: 'dishwasher, dish washer, dishwashing machine',
535: 'disk brake, disc brake',
536: 'dock, dockage, docking facility',
537: 'dogsled, dog sled, dog sleigh',
538: 'dome',
539: 'doormat, welcome mat',
540: 'drilling platform, offshore rig',
541: 'drum, membranophone, tympan',
542: 'drumstick',
543: 'dumbbell',
544: 'Dutch oven',
545: 'electric fan, blower',
546: 'electric guitar',
547: 'electric locomotive',
548: 'entertainment center',
549: 'envelope',
550: 'espresso maker',
551: 'face powder',
552: 'feather boa, boa',
553: 'file, file cabinet, filing cabinet',
554: 'fireboat',
555: 'fire engine, fire truck',
556: 'fire screen, fireguard',
557: 'flagpole, flagstaff',
558: 'flute, transverse flute',
559: 'folding chair',
560: 'football helmet',
561: 'forklift',
562: 'fountain',
563: 'fountain pen',
564: 'four-poster',
565: 'freight car',
566: 'French horn, horn',
567: 'frying pan, frypan, skillet',
568: 'fur coat',
569: 'garbage truck, dustcart',
570: 'gasmask, respirator, gas helmet',
571: 'gas pump, gasoline pump, petrol pump, island dispenser',
572: 'goblet',
573: 'go-kart',
574: 'golf ball',
575: 'golfcart, golf cart',
576: 'gondola',
577: 'gong, tam-tam',
578: 'gown',
579: 'grand piano, grand',
580: 'greenhouse, nursery, glasshouse',
581: 'grille, radiator grille',
582: 'grocery store, grocery, food market, market',
583: 'guillotine',
584: 'hair slide',
585: 'hair spray',
586: 'half track',
587: 'hammer',
588: 'hamper',
589: 'hand blower, blow dryer, blow drier, hair dryer, hair drier',
590: 'hand-held computer, hand-held microcomputer',
591: 'handkerchief, hankie, hanky, hankey',
592: 'hard disc, hard disk, fixed disk',
593: 'harmonica, mouth organ, harp, mouth harp',
594: 'harp',
595: 'harvester, reaper',
596: 'hatchet',
597: 'holster',
598: 'home theater, home theatre',
599: 'honeycomb',
600: 'hook, claw',
601: 'hoopskirt, crinoline',
602: 'horizontal bar, high bar',
603: 'horse cart, horse-cart',
604: 'hourglass',
605: 'iPod',
606: 'iron, smoothing iron',
607: "jack-o'-lantern",
608: 'jean, blue jean, denim',
609: 'jeep, landrover',
610: 'jersey, T-shirt, tee shirt',
611: 'jigsaw puzzle',
612: 'jinrikisha, ricksha, rickshaw',
613: 'joystick',
614: 'kimono',
615: 'knee pad',
616: 'knot',
617: 'lab coat, laboratory coat',
618: 'ladle',
619: 'lampshade, lamp shade',
620: 'laptop, laptop computer',
621: 'lawn mower, mower',
622: 'lens cap, lens cover',
623: 'letter opener, paper knife, paperknife',
624: 'library',
625: 'lifeboat',
626: 'lighter, light, igniter, ignitor',
627: 'limousine, limo',
628: 'liner, ocean liner',
629: 'lipstick, lip rouge',
630: 'Loafer',
631: 'lotion',
632: 'loudspeaker, speaker, speaker unit, loudspeaker system, speaker system',
633: "loupe, jeweler's loupe",
634: 'lumbermill, sawmill',
635: 'magnetic compass',
636: 'mailbag, postbag',
637: 'mailbox, letter box',
638: 'maillot',
639: 'maillot, tank suit',
640: 'manhole cover',
641: 'maraca',
642: 'marimba, xylophone',
643: 'mask',
644: 'matchstick',
645: 'maypole',
646: 'maze, labyrinth',
647: 'measuring cup',
648: 'medicine chest, medicine cabinet',
649: 'megalith, megalithic structure',
650: 'microphone, mike',
651: 'microwave, microwave oven',
652: 'military uniform',
653: 'milk can',
654: 'minibus',
655: 'miniskirt, mini',
656: 'minivan',
657: 'missile',
658: 'mitten',
659: 'mixing bowl',
660: 'mobile home, manufactured home',
661: 'Model T',
662: 'modem',
663: 'monastery',
664: 'monitor',
665: 'moped',
666: 'mortar',
667: 'mortarboard',
668: 'mosque',
669: 'mosquito net',
670: 'motor scooter, scooter',
671: 'mountain bike, all-terrain bike, off-roader',
672: 'mountain tent',
673: 'mouse, computer mouse',
674: 'mousetrap',
675: 'moving van',
676: 'muzzle',
677: 'nail',
678: 'neck brace',
679: 'necklace',
680: 'nipple',
681: 'notebook, notebook computer',
682: 'obelisk',
683: 'oboe, hautboy, hautbois',
684: 'ocarina, sweet potato',
685: 'odometer, hodometer, mileometer, milometer',
686: 'oil filter',
687: 'organ, pipe organ',
688: 'oscilloscope, scope, cathode-ray oscilloscope, CRO',
689: 'overskirt',
690: 'oxcart',
691: 'oxygen mask',
692: 'packet',
693: 'paddle, boat paddle',
694: 'paddlewheel, paddle wheel',
695: 'padlock',
696: 'paintbrush',
697: "pajama, pyjama, pj's, jammies",
698: 'palace',
699: 'panpipe, pandean pipe, syrinx',
700: 'paper towel',
701: 'parachute, chute',
702: 'parallel bars, bars',
703: 'park bench',
704: 'parking meter',
705: 'passenger car, coach, carriage',
706: 'patio, terrace',
707: 'pay-phone, pay-station',
708: 'pedestal, plinth, footstall',
709: 'pencil box, pencil case',
710: 'pencil sharpener',
711: 'perfume, essence',
712: 'Petri dish',
713: 'photocopier',
714: 'pick, plectrum, plectron',
715: 'pickelhaube',
716: 'picket fence, paling',
717: 'pickup, pickup truck',
718: 'pier',
719: 'piggy bank, penny bank',
720: 'pill bottle',
721: 'pillow',
722: 'ping-pong ball',
723: 'pinwheel',
724: 'pirate, pirate ship',
725: 'pitcher, ewer',
726: "plane, carpenter's plane, woodworking plane",
727: 'planetarium',
728: 'plastic bag',
729: 'plate rack',
730: 'plow, plough',
731: "plunger, plumber's helper",
732: 'Polaroid camera, Polaroid Land camera',
733: 'pole',
734: 'police van, police wagon, paddy wagon, patrol wagon, wagon, black Maria',
735: 'poncho',
736: 'pool table, billiard table, snooker table',
737: 'pop bottle, soda bottle',
738: 'pot, flowerpot',
739: "potter's wheel",
740: 'power drill',
741: 'prayer rug, prayer mat',
742: 'printer',
743: 'prison, prison house',
744: 'projectile, missile',
745: 'projector',
746: 'puck, hockey puck',
747: 'punching bag, punch bag, punching ball, punchball',
748: 'purse',
749: 'quill, quill pen',
750: 'quilt, comforter, comfort, puff',
751: 'racer, race car, racing car',
752: 'racket, racquet',
753: 'radiator',
754: 'radio, wireless',
755: 'radio telescope, radio reflector',
756: 'rain barrel',
757: 'recreational vehicle, RV, R.V.',
758: 'reel',
759: 'reflex camera',
760: 'refrigerator, icebox',
761: 'remote control, remote',
762: 'restaurant, eating house, eating place, eatery',
763: 'revolver, six-gun, six-shooter',
764: 'rifle',
765: 'rocking chair, rocker',
766: 'rotisserie',
767: 'rubber eraser, rubber, pencil eraser',
768: 'rugby ball',
769: 'rule, ruler',
770: 'running shoe',
771: 'safe',
772: 'safety pin',
773: 'saltshaker, salt shaker',
774: 'sandal',
775: 'sarong',
776: 'sax, saxophone',
777: 'scabbard',
778: 'scale, weighing machine',
779: 'school bus',
780: 'schooner',
781: 'scoreboard',
782: 'screen, CRT screen',
783: 'screw',
784: 'screwdriver',
785: 'seat belt, seatbelt',
786: 'sewing machine',
787: 'shield, buckler',
788: 'shoe shop, shoe-shop, shoe store',
789: 'shoji',
790: 'shopping basket',
791: 'shopping cart',
792: 'shovel',
793: 'shower cap',
794: 'shower curtain',
795: 'ski',
796: 'ski mask',
797: 'sleeping bag',
798: 'slide rule, slipstick',
799: 'sliding door',
800: 'slot, one-armed bandit',
801: 'snorkel',
802: 'snowmobile',
803: 'snowplow, snowplough',
804: 'soap dispenser',
805: 'soccer ball',
806: 'sock',
807: 'solar dish, solar collector, solar furnace',
808: 'sombrero',
809: 'soup bowl',
810: 'space bar',
811: 'space heater',
812: 'space shuttle',
813: 'spatula',
814: 'speedboat',
815: "spider web, spider's web",
816: 'spindle',
817: 'sports car, sport car',
818: 'spotlight, spot',
819: 'stage',
820: 'steam locomotive',
821: 'steel arch bridge',
822: 'steel drum',
823: 'stethoscope',
824: 'stole',
825: 'stone wall',
826: 'stopwatch, stop watch',
827: 'stove',
828: 'strainer',
829: 'streetcar, tram, tramcar, trolley, trolley car',
830: 'stretcher',
831: 'studio couch, day bed',
832: 'stupa, tope',
833: 'submarine, pigboat, sub, U-boat',
834: 'suit, suit of clothes',
835: 'sundial',
836: 'sunglass',
837: 'sunglasses, dark glasses, shades',
838: 'sunscreen, sunblock, sun blocker',
839: 'suspension bridge',
840: 'swab, swob, mop',
841: 'sweatshirt',
842: 'swimming trunks, bathing trunks',
843: 'swing',
844: 'switch, electric switch, electrical switch',
845: 'syringe',
846: 'table lamp',
847: 'tank, army tank, armored combat vehicle, armoured combat vehicle',
848: 'tape player',
849: 'teapot',
850: 'teddy, teddy bear',
851: 'television, television system',
852: 'tennis ball',
853: 'thatch, thatched roof',
854: 'theater curtain, theatre curtain',
855: 'thimble',
856: 'thresher, thrasher, threshing machine',
857: 'throne',
858: 'tile roof',
859: 'toaster',
860: 'tobacco shop, tobacconist shop, tobacconist',
861: 'toilet seat',
862: 'torch',
863: 'totem pole',
864: 'tow truck, tow car, wrecker',
865: 'toyshop',
866: 'tractor',
867: 'trailer truck, tractor trailer, trucking rig, rig, articulated lorry, semi',
868: 'tray',
869: 'trench coat',
870: 'tricycle, trike, velocipede',
871: 'trimaran',
872: 'tripod',
873: 'triumphal arch',
874: 'trolleybus, trolley coach, trackless trolley',
875: 'trombone',
876: 'tub, vat',
877: 'turnstile',
878: 'typewriter keyboard',
879: 'umbrella',
880: 'unicycle, monocycle',
881: 'upright, upright piano',
882: 'vacuum, vacuum cleaner',
883: 'vase',
884: 'vault',
885: 'velvet',
886: 'vending machine',
887: 'vestment',
888: 'viaduct',
889: 'violin, fiddle',
890: 'volleyball',
891: 'waffle iron',
892: 'wall clock',
893: 'wallet, billfold, notecase, pocketbook',
894: 'wardrobe, closet, press',
895: 'warplane, military plane',
896: 'washbasin, handbasin, washbowl, lavabo, wash-hand basin',
897: 'washer, automatic washer, washing machine',
898: 'water bottle',
899: 'water jug',
900: 'water tower',
901: 'whiskey jug',
902: 'whistle',
903: 'wig',
904: 'window screen',
905: 'window shade',
906: 'Windsor tie',
907: 'wine bottle',
908: 'wing',
909: 'wok',
910: 'wooden spoon',
911: 'wool, woolen, woollen',
912: 'worm fence, snake fence, snake-rail fence, Virginia fence',
913: 'wreck',
914: 'yawl',
915: 'yurt',
916: 'web site, website, internet site, site',
917: 'comic book',
918: 'crossword puzzle, crossword',
919: 'street sign',
920: 'traffic light, traffic signal, stoplight',
921: 'book jacket, dust cover, dust jacket, dust wrapper',
922: 'menu',
923: 'plate',
924: 'guacamole',
925: 'consomme',
926: 'hot pot, hotpot',
927: 'trifle',
928: 'ice cream, icecream',
929: 'ice lolly, lolly, lollipop, popsicle',
930: 'French loaf',
931: 'bagel, beigel',
932: 'pretzel',
933: 'cheeseburger',
934: 'hotdog, hot dog, red hot',
935: 'mashed potato',
936: 'head cabbage',
937: 'broccoli',
938: 'cauliflower',
939: 'zucchini, courgette',
940: 'spaghetti squash',
941: 'acorn squash',
942: 'butternut squash',
943: 'cucumber, cuke',
944: 'artichoke, globe artichoke',
945: 'bell pepper',
946: 'cardoon',
947: 'mushroom',
948: 'Granny Smith',
949: 'strawberry',
950: 'orange',
951: 'lemon',
952: 'fig',
953: 'pineapple, ananas',
954: 'banana',
955: 'jackfruit, jak, jack',
956: 'custard apple',
957: 'pomegranate',
958: 'hay',
959: 'carbonara',
960: 'chocolate sauce, chocolate syrup',
961: 'dough',
962: 'meat loaf, meatloaf',
963: 'pizza, pizza pie',
964: 'potpie',
965: 'burrito',
966: 'red wine',
967: 'espresso',
968: 'cup',
969: 'eggnog',
970: 'alp',
971: 'bubble',
972: 'cliff, drop, drop-off',
973: 'coral reef',
974: 'geyser',
975: 'lakeside, lakeshore',
976: 'promontory, headland, head, foreland',
977: 'sandbar, sand bar',
978: 'seashore, coast, seacoast, sea-coast',
979: 'valley, vale',
980: 'volcano',
981: 'ballplayer, baseball player',
982: 'groom, bridegroom',
983: 'scuba diver',
984: 'rapeseed',
985: 'daisy',
986: "yellow lady's slipper, yellow lady-slipper, Cypripedium calceolus, Cypripedium parviflorum",
987: 'corn',
988: 'acorn',
989: 'hip, rose hip, rosehip',
990: 'buckeye, horse chestnut, conker',
991: 'coral fungus',
992: 'agaric',
993: 'gyromitra',
994: 'stinkhorn, carrion fungus',
995: 'earthstar',
996: 'hen-of-the-woods, hen of the woods, Polyporus frondosus, Grifola frondosa',
997: 'bolete',
998: 'ear, spike, capitulum',
999: 'toilet tissue, toilet paper, bathroom tissue'
\ No newline at end of file
0: n01440764
1: n01443537
2: n01484850
3: n01491361
4: n01494475
5: n01496331
6: n01498041
7: n01514668
8: n07646067
9: n01518878
10: n01530575
11: n01531178
12: n01532829
13: n01534433
14: n01537544
15: n01558993
16: n01560419
17: n01580077
18: n01582220
19: n01592084
20: n01601694
21: n13382471
22: n01614925
23: n01616318
24: n01622779
25: n01629819
26: n01630670
27: n01631663
28: n01632458
29: n01632777
30: n01641577
31: n01644373
32: n01644900
33: n01664065
34: n01665541
35: n01667114
36: n01667778
37: n01669191
38: n01675722
39: n01677366
40: n01682714
41: n01685808
42: n01687978
43: n01688243
44: n01689811
45: n01692333
46: n01693334
47: n01694178
48: n01695060
49: n01697457
50: n01698640
51: n01704323
52: n01728572
53: n01728920
54: n01729322
55: n01729977
56: n01734418
57: n01735189
58: n01737021
59: n01739381
60: n01740131
61: n01742172
62: n01744401
63: n01748264
64: n01749939
65: n01751748
66: n01753488
67: n01755581
68: n01756291
69: n01768244
70: n01770081
71: n01770393
72: n01773157
73: n01773549
74: n01773797
75: n01774384
76: n01774750
77: n01775062
78: n04432308
79: n01784675
80: n01795545
81: n01796340
82: n01797886
83: n01798484
84: n01806143
85: n07647321
86: n07647496
87: n01817953
88: n01818515
89: n01819313
90: n01820546
91: n01824575
92: n01828970
93: n01829413
94: n01833805
95: n01843065
96: n01843383
97: n01847000
98: n01855032
99: n07646821
100: n01860187
101: n01871265
102: n01872772
103: n01873310
104: n01877812
105: n01882714
106: n01883070
107: n01910747
108: n01914609
109: n01917289
110: n01924916
111: n01930112
112: n01943899
113: n01944390
114: n13719102
115: n01950731
116: n01955084
117: n01968897
118: n01978287
119: n01978455
120: n01980166
121: n01981276
122: n01983481
123: n01984695
124: n01985128
125: n01986214
126: n01990800
127: n02002556
128: n02002724
129: n02006656
130: n02007558
131: n02009229
132: n02009912
133: n02011460
134: n03126707
135: n02013706
136: n02017213
137: n02018207
138: n02018795
139: n02025239
140: n02027492
141: n02028035
142: n02033041
143: n02037110
144: n02051845
145: n02056570
146: n02058221
147: n02066245
148: n02071294
149: n02074367
150: n02077923
151: n08742578
152: n02085782
153: n02085936
154: n02086079
155: n02086240
156: n02086646
157: n02086910
158: n02087046
159: n02087394
160: n02088094
161: n02088238
162: n02088364
163: n02088466
164: n02088632
165: n02089078
166: n02089867
167: n02089973
168: n02090379
169: n02090622
170: n02090721
171: n02091032
172: n02091134
173: n02091244
174: n02091467
175: n02091635
176: n02091831
177: n02092002
178: n02092339
179: n02093256
180: n02093428
181: n02093647
182: n02093754
183: n02093859
184: n02093991
185: n02094114
186: n02094258
187: n02094433
188: n02095314
189: n02095570
190: n02095889
191: n02096051
192: n02096177
193: n02096294
194: n02096437
195: n02096585
196: n02097047
197: n02097130
198: n02097209
199: n02097298
200: n02097474
201: n02097658
202: n02098105
203: n02098286
204: n02098413
205: n02099267
206: n02099429
207: n02099601
208: n02099712
209: n02099849
210: n02100236
211: n02100583
212: n02100735
213: n02100877
214: n02101006
215: n02101388
216: n02101556
217: n02102040
218: n02102177
219: n02102318
220: n02102480
221: n02102973
222: n02104029
223: n02104365
224: n02105056
225: n02105162
226: n02105251
227: n02105412
228: n02105505
229: n02105641
230: n02105855
231: n02106030
232: n02106166
233: n02106382
234: n02106550
235: n02106662
236: n02107142
237: n02107312
238: n02107574
239: n02107683
240: n02107908
241: n02108000
242: n02108089
243: n02108422
244: n02108551
245: n02108915
246: n02109047
247: n02109525
248: n02109961
249: n02110063
250: n02110185
251: n02110341
252: n02110627
253: n02110806
254: n02110958
255: n02111129
256: n02111277
257: n02111500
258: n02111889
259: n02112018
260: n02112137
261: n02112350
262: n02112706
263: n02113023
264: n02113186
265: n02113624
266: n02113712
267: n02113799
268: n02113978
269: n02114367
270: n02114548
271: n02114712
272: n02114855
273: n02115641
274: n02115913
275: n02116738
276: n02117135
277: n02119022
278: n02119789
279: n02120079
280: n02120505
281: n02123045
282: n02123159
283: n02123394
284: n02123597
285: n02124075
286: n02125311
287: n02127052
288: n02128385
289: n02128757
290: n02128925
291: n02129165
292: n02129604
293: n02130308
294: n02132136
295: n02133161
296: n02134084
297: n02134418
298: n02137549
299: n02138441
300: n02165105
301: n02165456
302: n02167151
303: n02168699
304: n02169497
305: n02172182
306: n02174001
307: n02177972
308: n03373237
309: n07975909
310: n02219486
311: n02226429
312: n02229544
313: n02231487
314: n02233338
315: n02236044
316: n02256656
317: n02259212
318: n02264363
319: n02268443
320: n02268853
321: n02276258
322: n02277742
323: n02279972
324: n02280649
325: n02281406
326: n02281787
327: n02317335
328: n02319095
329: n02321529
330: n02325366
331: n02326432
332: n02328150
333: n02342885
334: n02346627
335: n02356798
336: n02361337
337: n05262120
338: n02364673
339: n02389026
340: n02391049
341: n02395406
342: n02396427
343: n02397096
344: n02398521
345: n02403003
346: n02408429
347: n02410509
348: n02412080
349: n02415577
350: n02417914
351: n02422106
352: n02422699
353: n02423022
354: n02437312
355: n02437616
356: n10771990
357: n14765497
358: n02443114
359: n02443484
360: n14765785
361: n02445715
362: n02447366
363: n02454379
364: n02457408
365: n02480495
366: n02480855
367: n02481823
368: n02483362
369: n02483708
370: n02484975
371: n02486261
372: n02486410
373: n02487347
374: n02488291
375: n02488702
376: n02489166
377: n02490219
378: n02492035
379: n02492660
380: n02493509
381: n02493793
382: n02494079
383: n02497673
384: n02500267
385: n02504013
386: n02504458
387: n02509815
388: n02510455
389: n02514041
390: n07783967
391: n02536864
392: n02606052
393: n02607072
394: n02640242
395: n02641379
396: n02643566
397: n02655020
398: n02666347
399: n02667093
400: n02669723
401: n02672831
402: n02676566
403: n02687172
404: n02690373
405: n02692877
406: n02699494
407: n02701002
408: n02704792
409: n02708093
410: n02727426
411: n08496334
412: n02747177
413: n02749479
414: n02769748
415: n02776631
416: n02777292
417: n02782329
418: n02783161
419: n02786058
420: n02787622
421: n02788148
422: n02790996
423: n02791124
424: n02791270
425: n02793495
426: n02794156
427: n02795169
428: n02797295
429: n02799071
430: n02802426
431: n02804515
432: n02804610
433: n02807133
434: n02808304
435: n02808440
436: n02814533
437: n02814860
438: n02815834
439: n02817516
440: n02823428
441: n02823750
442: n02825657
443: n02834397
444: n02835271
445: n02837789
446: n02840245
447: n02841315
448: n02843684
449: n02859443
450: n02860847
451: n02865351
452: n02869837
453: n02870880
454: n02871525
455: n02877765
456: n02880308
457: n02883205
458: n02892201
459: n02892767
460: n02894605
461: n02895154
462: n12520864
463: n02909870
464: n02910353
465: n02916936
466: n02917067
467: n02927161
468: n02930766
469: n02939185
470: n02948072
471: n02950826
472: n02951358
473: n02951585
474: n02963159
475: n02965783
476: n02966193
477: n02966687
478: n02971356
479: n02974003
480: n02977058
481: n02978881
482: n02979186
483: n02980441
484: n02981792
485: n02988304
486: n02992211
487: n02992529
488: n13652994
489: n03000134
490: n03000247
491: n03000684
492: n03014705
493: n03016953
494: n03017168
495: n03018349
496: n03026506
497: n03028079
498: n03032252
499: n03041632
500: n03042490
501: n03045698
502: n03047690
503: n03062245
504: n03063599
505: n03063689
506: n03065424
507: n03075370
508: n03085013
509: n03089624
510: n03095699
511: n03100240
512: n03109150
513: n03110669
514: n03124043
515: n03124170
516: n15142452
517: n03126707
518: n03127747
519: n03127925
520: n03131574
521: n03133878
522: n03134739
523: n03141823
524: n03146219
525: n03160309
526: n03179701
527: n03180011
528: n03187595
529: n03188531
530: n03196217
531: n03197337
532: n03201208
533: n03207743
534: n03207941
535: n03208938
536: n03216828
537: n03218198
538: n13872072
539: n03223299
540: n03240683
541: n03249569
542: n07647870
543: n03255030
544: n03259401
545: n03271574
546: n03272010
547: n03272562
548: n03290653
549: n13869788
550: n03297495
551: n03314780
552: n03325584
553: n03337140
554: n03344393
555: n03345487
556: n03347037
557: n03355925
558: n03372029
559: n03376595
560: n03379051
561: n03384352
562: n03388043
563: n03388183
564: n03388549
565: n03393912
566: n03394916
567: n03400231
568: n03404251
569: n03417042
570: n03424325
571: n03425413
572: n03443371
573: n03444034
574: n03445777
575: n03445924
576: n03447447
577: n03447721
578: n08286342
579: n03452741
580: n03457902
581: n03459775
582: n03461385
583: n03467068
584: n03476684
585: n03476991
586: n03478589
587: n03482001
588: n03482405
589: n03483316
590: n03485407
591: n03485794
592: n03492542
593: n03494278
594: n03495570
595: n10161363
596: n03498962
597: n03527565
598: n03529860
599: n09218315
600: n03532672
601: n03534580
602: n03535780
603: n03538406
604: n03544143
605: n03584254
606: n03584829
607: n03590841
608: n03594734
609: n03594945
610: n03595614
611: n03598930
612: n03599486
613: n03602883
614: n03617480
615: n03623198
616: n15102712
617: n03630383
618: n03633091
619: n03637318
620: n03642806
621: n03649909
622: n03657121
623: n03658185
624: n07977870
625: n03662601
626: n03666591
627: n03670208
628: n03673027
629: n03676483
630: n03680355
631: n03690938
632: n03691459
633: n03692522
634: n03697007
635: n03706229
636: n03709823
637: n03710193
638: n03710637
639: n03710721
640: n03717622
641: n03720891
642: n03721384
643: n03725035
644: n03729826
645: n03733131
646: n03733281
647: n03733805
648: n03742115
649: n03743016
650: n03759954
651: n03761084
652: n03763968
653: n03764736
654: n03769881
655: n03770439
656: n03770679
657: n03773504
658: n03775071
659: n03775546
660: n03776460
661: n03777568
662: n03777754
663: n03781244
664: n03782006
665: n03785016
666: n14955889
667: n03787032
668: n03788195
669: n03788365
670: n03791053
671: n03792782
672: n03792972
673: n03793489
674: n03794056
675: n03796401
676: n03803284
677: n13652335
678: n03814639
679: n03814906
680: n03825788
681: n03832673
682: n03837869
683: n03838899
684: n03840681
685: n03841143
686: n03843555
687: n03854065
688: n03857828
689: n03866082
690: n03868242
691: n03868863
692: n07281099
693: n03873416
694: n03874293
695: n03874599
696: n03876231
697: n03877472
698: n08053121
699: n03884397
700: n03887697
701: n03888257
702: n03888605
703: n03891251
704: n03891332
705: n03895866
706: n03899768
707: n03902125
708: n03903868
709: n03908618
710: n03908714
711: n03916031
712: n03920288
713: n03924679
714: n03929660
715: n03929855
716: n03930313
717: n03930630
718: n03934042
719: n03935335
720: n03937543
721: n03938244
722: n03942813
723: n03944341
724: n03947888
725: n03950228
726: n03954731
727: n03956157
728: n03958227
729: n03961711
730: n03967562
731: n03970156
732: n03976467
733: n08620881
734: n03977966
735: n03980874
736: n03982430
737: n03983396
738: n03991062
739: n03992509
740: n03995372
741: n03998194
742: n04004767
743: n13937284
744: n04008634
745: n04009801
746: n04019541
747: n04023962
748: n13413294
749: n04033901
750: n04033995
751: n04037443
752: n04039381
753: n09403211
754: n04041544
755: n04044716
756: n04049303
757: n04065272
758: n07056680
759: n04069434
760: n04070727
761: n04074963
762: n04081281
763: n04086273
764: n04090263
765: n04099969
766: n04111531
767: n04116512
768: n04118538
769: n04118776
770: n04120489
771: n04125116
772: n04127249
773: n04131690
774: n04133789
775: n04136333
776: n04141076
777: n04141327
778: n04141975
779: n04146614
780: n04147291
781: n04149813
782: n04152593
783: n04154340
784: n07917272
785: n04162706
786: n04179913
787: n04192698
788: n04200800
789: n04201297
790: n04204238
791: n04204347
792: n04208427
793: n04209133
794: n04209239
795: n04228054
796: n04229816
797: n04235860
798: n04238763
799: n04239074
800: n04243546
801: n04251144
802: n04252077
803: n04252225
804: n04254120
805: n04254680
806: n04254777
807: n04258138
808: n04259630
809: n04263257
810: n04264628
811: n04265275
812: n04266014
813: n04270147
814: n04273569
815: n04275363
816: n05605498
817: n04285008
818: n04286575
819: n08646566
820: n04310018
821: n04311004
822: n04311174
823: n04317175
824: n04325704
825: n04326547
826: n04328186
827: n04330267
828: n04332243
829: n04335435
830: n04337157
831: n04344873
832: n04346328
833: n04347754
834: n04350905
835: n04355338
836: n04355933
837: n04356056
838: n04357314
839: n04366367
840: n04367480
841: n04370456
842: n04371430
843: n14009946
844: n04372370
845: n04376876
846: n04380533
847: n04389033
848: n04392985
849: n04398044
850: n04399382
851: n04404412
852: n04409515
853: n04417672
854: n04418357
855: n04423845
856: n04428191
857: n04429376
858: n04435653
859: n04442312
860: n04443257
861: n04447861
862: n04456115
863: n04458633
864: n04461696
865: n04462240
866: n04465666
867: n04467665
868: n04476259
869: n04479046
870: n04482393
871: n04483307
872: n04485082
873: n04486054
874: n04487081
875: n04487394
876: n04493381
877: n04501370
878: n04505470
879: n04507155
880: n04509417
881: n04515003
882: n04517823
883: n04522168
884: n04523525
885: n04525038
886: n04525305
887: n04532106
888: n04532670
889: n04536866
890: n04540053
891: n04542943
892: n04548280
893: n04548362
894: n04550184
895: n04552348
896: n04553703
897: n04554684
898: n04557648
899: n04560804
900: n04562935
901: n04579145
902: n04579667
903: n04584207
904: n04589890
905: n04590129
906: n04591157
907: n04591713
908: n10782135
909: n04596742
910: n04598010
911: n04599235
912: n04604644
913: n14423870
914: n04612504
915: n04613696
916: n06359193
917: n06596364
918: n06785654
919: n06794110
920: n06874185
921: n07248320
922: n07565083
923: n07657664
924: n07583066
925: n07584110
926: n07590611
927: n07613480
928: n07614500
929: n07615774
930: n07684084
931: n07693725
932: n07695742
933: n07697313
934: n07697537
935: n07711569
936: n07714571
937: n07714990
938: n07715103
939: n12159804
940: n12160303
941: n12160857
942: n07717556
943: n07718472
944: n07718747
945: n07720875
946: n07730033
947: n13001041
948: n07742313
949: n12630144
950: n14991210
951: n07749582
952: n07753113
953: n07753275
954: n07753592
955: n07754684
956: n07760859
957: n07768694
958: n07802026
959: n07831146
960: n07836838
961: n07860988
962: n07871810
963: n07873807
964: n07875152
965: n07880968
966: n07892512
967: n07920052
968: n13904665
969: n07932039
970: n09193705
971: n09229709
972: n09246464
973: n09256479
974: n09288635
975: n09332890
976: n09399592
977: n09421951
978: n09428293
979: n09468604
980: n09472597
981: n09835506
982: n10148035
983: n10565667
984: n11879895
985: n11939491
986: n12057211
987: n12144580
988: n12267677
989: n12620546
990: n12768682
991: n12985857
992: n12998815
993: n13037406
994: n13040303
995: n13044778
996: n13052670
997: n13054560
998: n13133613
999: n15075141
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment