Commit 86685e45 authored by lijian6's avatar lijian6
Browse files

Initial commit

parents
Pipeline #524 canceled with stages
model:
base_learning_rate: 2.0e-06
target: ldm.models.diffusion.ddpm.LatentDiffusion
params:
linear_start: 0.0015
linear_end: 0.0195
num_timesteps_cond: 1
log_every_t: 200
timesteps: 1000
first_stage_key: image
cond_stage_key: class_label
image_size: 64
channels: 3
cond_stage_trainable: false
concat_mode: false
monitor: val/loss
unet_config:
target: ldm.modules.diffusionmodules.openaimodel.UNetModel
params:
image_size: 64
in_channels: 3
out_channels: 3
model_channels: 224
attention_resolutions:
- 8
- 4
- 2
num_res_blocks: 2
channel_mult:
- 1
- 2
- 3
- 4
num_head_channels: 32
first_stage_config:
target: ldm.models.autoencoder.VQModelInterface
params:
embed_dim: 3
n_embed: 8192
ddconfig:
double_z: false
z_channels: 3
resolution: 256
in_channels: 3
out_ch: 3
ch: 128
ch_mult:
- 1
- 2
- 4
num_res_blocks: 2
attn_resolutions: []
dropout: 0.0
lossconfig:
target: torch.nn.Identity
cond_stage_config: __is_unconditional__
data:
target: main.DataModuleFromConfig
params:
batch_size: 48
num_workers: 5
wrap: false
train:
target: ldm.data.lsun.LSUNBedroomsTrain
params:
size: 256
validation:
target: ldm.data.lsun.LSUNBedroomsValidation
params:
size: 256
model:
base_learning_rate: 5.0e-05
target: ldm.models.diffusion.ddpm.LatentDiffusion
params:
linear_start: 0.0015
linear_end: 0.0155
num_timesteps_cond: 1
log_every_t: 200
timesteps: 1000
loss_type: l1
first_stage_key: image
cond_stage_key: image
image_size: 32
channels: 4
cond_stage_trainable: false
concat_mode: false
scale_by_std: true
monitor: val/loss_simple_ema
scheduler_config:
target: ldm.lr_scheduler.LambdaLinearScheduler
params:
warm_up_steps:
- 10000
cycle_lengths:
- 10000000000000
f_start:
- 1.0e-06
f_max:
- 1.0
f_min:
- 1.0
unet_config:
target: ldm.modules.diffusionmodules.openaimodel.UNetModel
params:
image_size: 32
in_channels: 4
out_channels: 4
model_channels: 192
attention_resolutions:
- 1
- 2
- 4
- 8
num_res_blocks: 2
channel_mult:
- 1
- 2
- 2
- 4
- 4
num_heads: 8
use_scale_shift_norm: true
resblock_updown: true
first_stage_config:
target: ldm.models.autoencoder.AutoencoderKL
params:
embed_dim: 4
monitor: val/rec_loss
ddconfig:
double_z: true
z_channels: 4
resolution: 256
in_channels: 3
out_ch: 3
ch: 128
ch_mult:
- 1
- 2
- 4
- 4
num_res_blocks: 2
attn_resolutions: []
dropout: 0.0
lossconfig:
target: torch.nn.Identity
cond_stage_config: '__is_unconditional__'
data:
target: main.DataModuleFromConfig
params:
batch_size: 96
num_workers: 5
wrap: false
train:
target: ldm.data.lsun.LSUNChurchesTrain
params:
size: 256
validation:
target: ldm.data.lsun.LSUNChurchesValidation
params:
size: 256
model:
base_learning_rate: 1.0e-06
target: ldm.models.diffusion.ddpm.LatentDiffusion
params:
linear_start: 0.0015
linear_end: 0.0205
log_every_t: 100
timesteps: 1000
loss_type: l1
first_stage_key: image
cond_stage_key: segmentation
image_size: 64
channels: 3
concat_mode: true
cond_stage_trainable: true
unet_config:
target: ldm.modules.diffusionmodules.openaimodel.UNetModel
params:
image_size: 64
in_channels: 6
out_channels: 3
model_channels: 128
attention_resolutions:
- 32
- 16
- 8
num_res_blocks: 2
channel_mult:
- 1
- 4
- 8
num_heads: 8
first_stage_config:
target: ldm.models.autoencoder.VQModelInterface
params:
embed_dim: 3
n_embed: 8192
ddconfig:
double_z: false
z_channels: 3
resolution: 256
in_channels: 3
out_ch: 3
ch: 128
ch_mult:
- 1
- 2
- 4
num_res_blocks: 2
attn_resolutions: []
dropout: 0.0
lossconfig:
target: torch.nn.Identity
cond_stage_config:
target: ldm.modules.encoders.modules.SpatialRescaler
params:
n_stages: 2
in_channels: 182
out_channels: 3
model:
base_learning_rate: 1.0e-06
target: ldm.models.diffusion.ddpm.LatentDiffusion
params:
linear_start: 0.0015
linear_end: 0.0205
log_every_t: 100
timesteps: 1000
loss_type: l1
first_stage_key: image
cond_stage_key: segmentation
image_size: 128
channels: 3
concat_mode: true
cond_stage_trainable: true
unet_config:
target: ldm.modules.diffusionmodules.openaimodel.UNetModel
params:
image_size: 128
in_channels: 6
out_channels: 3
model_channels: 128
attention_resolutions:
- 32
- 16
- 8
num_res_blocks: 2
channel_mult:
- 1
- 4
- 8
num_heads: 8
first_stage_config:
target: ldm.models.autoencoder.VQModelInterface
params:
embed_dim: 3
n_embed: 8192
monitor: val/rec_loss
ddconfig:
double_z: false
z_channels: 3
resolution: 256
in_channels: 3
out_ch: 3
ch: 128
ch_mult:
- 1
- 2
- 4
num_res_blocks: 2
attn_resolutions: []
dropout: 0.0
lossconfig:
target: torch.nn.Identity
cond_stage_config:
target: ldm.modules.encoders.modules.SpatialRescaler
params:
n_stages: 2
in_channels: 182
out_channels: 3
data:
target: main.DataModuleFromConfig
params:
batch_size: 8
wrap: false
num_workers: 10
train:
target: ldm.data.landscapes.RFWTrain
params:
size: 768
crop_size: 512
segmentation_to_float32: true
validation:
target: ldm.data.landscapes.RFWValidation
params:
size: 768
crop_size: 512
segmentation_to_float32: true
model:
base_learning_rate: 2.0e-06
target: ldm.models.diffusion.ddpm.LatentDiffusion
params:
linear_start: 0.0015
linear_end: 0.0195
num_timesteps_cond: 1
log_every_t: 200
timesteps: 1000
first_stage_key: image
cond_stage_key: caption
image_size: 64
channels: 3
cond_stage_trainable: true
conditioning_key: crossattn
monitor: val/loss_simple_ema
unet_config:
target: ldm.modules.diffusionmodules.openaimodel.UNetModel
params:
image_size: 64
in_channels: 3
out_channels: 3
model_channels: 192
attention_resolutions:
- 8
- 4
- 2
num_res_blocks: 2
channel_mult:
- 1
- 2
- 3
- 5
num_head_channels: 32
use_spatial_transformer: true
transformer_depth: 1
context_dim: 640
first_stage_config:
target: ldm.models.autoencoder.VQModelInterface
params:
embed_dim: 3
n_embed: 8192
ddconfig:
double_z: false
z_channels: 3
resolution: 256
in_channels: 3
out_ch: 3
ch: 128
ch_mult:
- 1
- 2
- 4
num_res_blocks: 2
attn_resolutions: []
dropout: 0.0
lossconfig:
target: torch.nn.Identity
cond_stage_config:
target: ldm.modules.encoders.modules.BERTEmbedder
params:
n_embed: 640
n_layer: 32
data:
target: main.DataModuleFromConfig
params:
batch_size: 28
num_workers: 10
wrap: false
train:
target: ldm.data.previews.pytorch_dataset.PreviewsTrain
params:
size: 256
validation:
target: ldm.data.previews.pytorch_dataset.PreviewsValidation
params:
size: 256
from torchvision.datasets.utils import download_url
from ldm.util import instantiate_from_config
import torch
import os
# todo ?
from google.colab import files
from IPython.display import Image as ipyimg
import ipywidgets as widgets
from PIL import Image
from numpy import asarray
from einops import rearrange, repeat
import torch, torchvision
from ldm.models.diffusion.ddim import DDIMSampler
from ldm.util import ismap
import time
from omegaconf import OmegaConf
def download_models(mode):
if mode == "superresolution":
# this is the small bsr light model
url_conf = 'https://heibox.uni-heidelberg.de/f/31a76b13ea27482981b4/?dl=1'
url_ckpt = 'https://heibox.uni-heidelberg.de/f/578df07c8fc04ffbadf3/?dl=1'
path_conf = 'logs/diffusion/superresolution_bsr/configs/project.yaml'
path_ckpt = 'logs/diffusion/superresolution_bsr/checkpoints/last.ckpt'
download_url(url_conf, path_conf)
download_url(url_ckpt, path_ckpt)
path_conf = path_conf + '/?dl=1' # fix it
path_ckpt = path_ckpt + '/?dl=1' # fix it
return path_conf, path_ckpt
else:
raise NotImplementedError
def load_model_from_config(config, ckpt):
print(f"Loading model from {ckpt}")
pl_sd = torch.load(ckpt, map_location="cpu")
global_step = pl_sd["global_step"]
sd = pl_sd["state_dict"]
model = instantiate_from_config(config.model)
m, u = model.load_state_dict(sd, strict=False)
model.cuda()
model.eval()
return {"model": model}, global_step
def get_model(mode):
path_conf, path_ckpt = download_models(mode)
config = OmegaConf.load(path_conf)
model, step = load_model_from_config(config, path_ckpt)
return model
def get_custom_cond(mode):
dest = "data/example_conditioning"
if mode == "superresolution":
uploaded_img = files.upload()
filename = next(iter(uploaded_img))
name, filetype = filename.split(".") # todo assumes just one dot in name !
os.rename(f"{filename}", f"{dest}/{mode}/custom_{name}.{filetype}")
elif mode == "text_conditional":
w = widgets.Text(value='A cake with cream!', disabled=True)
display(w)
with open(f"{dest}/{mode}/custom_{w.value[:20]}.txt", 'w') as f:
f.write(w.value)
elif mode == "class_conditional":
w = widgets.IntSlider(min=0, max=1000)
display(w)
with open(f"{dest}/{mode}/custom.txt", 'w') as f:
f.write(w.value)
else:
raise NotImplementedError(f"cond not implemented for mode{mode}")
def get_cond_options(mode):
path = "data/example_conditioning"
path = os.path.join(path, mode)
onlyfiles = [f for f in sorted(os.listdir(path))]
return path, onlyfiles
def select_cond_path(mode):
path = "data/example_conditioning" # todo
path = os.path.join(path, mode)
onlyfiles = [f for f in sorted(os.listdir(path))]
selected = widgets.RadioButtons(
options=onlyfiles,
description='Select conditioning:',
disabled=False
)
display(selected)
selected_path = os.path.join(path, selected.value)
return selected_path
def get_cond(mode, selected_path):
example = dict()
if mode == "superresolution":
up_f = 4
visualize_cond_img(selected_path)
c = Image.open(selected_path)
c = torch.unsqueeze(torchvision.transforms.ToTensor()(c), 0)
c_up = torchvision.transforms.functional.resize(c, size=[up_f * c.shape[2], up_f * c.shape[3]], antialias=True)
c_up = rearrange(c_up, '1 c h w -> 1 h w c')
c = rearrange(c, '1 c h w -> 1 h w c')
c = 2. * c - 1.
c = c.to(torch.device("cuda"))
example["LR_image"] = c
example["image"] = c_up
return example
def visualize_cond_img(path):
display(ipyimg(filename=path))
def run(model, selected_path, task, custom_steps, resize_enabled=False, classifier_ckpt=None, global_step=None):
example = get_cond(task, selected_path)
save_intermediate_vid = False
n_runs = 1
masked = False
guider = None
ckwargs = None
mode = 'ddim'
ddim_use_x0_pred = False
temperature = 1.
eta = 1.
make_progrow = True
custom_shape = None
height, width = example["image"].shape[1:3]
split_input = height >= 128 and width >= 128
if split_input:
ks = 128
stride = 64
vqf = 4 #
model.split_input_params = {"ks": (ks, ks), "stride": (stride, stride),
"vqf": vqf,
"patch_distributed_vq": True,
"tie_braker": False,
"clip_max_weight": 0.5,
"clip_min_weight": 0.01,
"clip_max_tie_weight": 0.5,
"clip_min_tie_weight": 0.01}
else:
if hasattr(model, "split_input_params"):
delattr(model, "split_input_params")
invert_mask = False
x_T = None
for n in range(n_runs):
if custom_shape is not None:
x_T = torch.randn(1, custom_shape[1], custom_shape[2], custom_shape[3]).to(model.device)
x_T = repeat(x_T, '1 c h w -> b c h w', b=custom_shape[0])
logs = make_convolutional_sample(example, model,
mode=mode, custom_steps=custom_steps,
eta=eta, swap_mode=False , masked=masked,
invert_mask=invert_mask, quantize_x0=False,
custom_schedule=None, decode_interval=10,
resize_enabled=resize_enabled, custom_shape=custom_shape,
temperature=temperature, noise_dropout=0.,
corrector=guider, corrector_kwargs=ckwargs, x_T=x_T, save_intermediate_vid=save_intermediate_vid,
make_progrow=make_progrow,ddim_use_x0_pred=ddim_use_x0_pred
)
return logs
@torch.no_grad()
def convsample_ddim(model, cond, steps, shape, eta=1.0, callback=None, normals_sequence=None,
mask=None, x0=None, quantize_x0=False, img_callback=None,
temperature=1., noise_dropout=0., score_corrector=None,
corrector_kwargs=None, x_T=None, log_every_t=None
):
ddim = DDIMSampler(model)
bs = shape[0] # dont know where this comes from but wayne
shape = shape[1:] # cut batch dim
print(f"Sampling with eta = {eta}; steps: {steps}")
samples, intermediates = ddim.sample(steps, batch_size=bs, shape=shape, conditioning=cond, callback=callback,
normals_sequence=normals_sequence, quantize_x0=quantize_x0, eta=eta,
mask=mask, x0=x0, temperature=temperature, verbose=False,
score_corrector=score_corrector,
corrector_kwargs=corrector_kwargs, x_T=x_T)
return samples, intermediates
@torch.no_grad()
def make_convolutional_sample(batch, model, mode="vanilla", custom_steps=None, eta=1.0, swap_mode=False, masked=False,
invert_mask=True, quantize_x0=False, custom_schedule=None, decode_interval=1000,
resize_enabled=False, custom_shape=None, temperature=1., noise_dropout=0., corrector=None,
corrector_kwargs=None, x_T=None, save_intermediate_vid=False, make_progrow=True,ddim_use_x0_pred=False):
log = dict()
z, c, x, xrec, xc = model.get_input(batch, model.first_stage_key,
return_first_stage_outputs=True,
force_c_encode=not (hasattr(model, 'split_input_params')
and model.cond_stage_key == 'coordinates_bbox'),
return_original_cond=True)
log_every_t = 1 if save_intermediate_vid else None
if custom_shape is not None:
z = torch.randn(custom_shape)
print(f"Generating {custom_shape[0]} samples of shape {custom_shape[1:]}")
z0 = None
log["input"] = x
log["reconstruction"] = xrec
if ismap(xc):
log["original_conditioning"] = model.to_rgb(xc)
if hasattr(model, 'cond_stage_key'):
log[model.cond_stage_key] = model.to_rgb(xc)
else:
log["original_conditioning"] = xc if xc is not None else torch.zeros_like(x)
if model.cond_stage_model:
log[model.cond_stage_key] = xc if xc is not None else torch.zeros_like(x)
if model.cond_stage_key =='class_label':
log[model.cond_stage_key] = xc[model.cond_stage_key]
with model.ema_scope("Plotting"):
t0 = time.time()
img_cb = None
sample, intermediates = convsample_ddim(model, c, steps=custom_steps, shape=z.shape,
eta=eta,
quantize_x0=quantize_x0, img_callback=img_cb, mask=None, x0=z0,
temperature=temperature, noise_dropout=noise_dropout,
score_corrector=corrector, corrector_kwargs=corrector_kwargs,
x_T=x_T, log_every_t=log_every_t)
t1 = time.time()
if ddim_use_x0_pred:
sample = intermediates['pred_x0'][-1]
x_sample = model.decode_first_stage(sample)
try:
x_sample_noquant = model.decode_first_stage(sample, force_not_quantize=True)
log["sample_noquant"] = x_sample_noquant
log["sample_diff"] = torch.abs(x_sample_noquant - x_sample)
except:
pass
log["sample"] = x_sample
log["time"] = t1 - t0
return log
\ No newline at end of file
#!/bin/bash
wget -O models/first_stage_models/kl-f4/model.zip https://ommer-lab.com/files/latent-diffusion/kl-f4.zip
wget -O models/first_stage_models/kl-f8/model.zip https://ommer-lab.com/files/latent-diffusion/kl-f8.zip
wget -O models/first_stage_models/kl-f16/model.zip https://ommer-lab.com/files/latent-diffusion/kl-f16.zip
wget -O models/first_stage_models/kl-f32/model.zip https://ommer-lab.com/files/latent-diffusion/kl-f32.zip
wget -O models/first_stage_models/vq-f4/model.zip https://ommer-lab.com/files/latent-diffusion/vq-f4.zip
wget -O models/first_stage_models/vq-f4-noattn/model.zip https://ommer-lab.com/files/latent-diffusion/vq-f4-noattn.zip
wget -O models/first_stage_models/vq-f8/model.zip https://ommer-lab.com/files/latent-diffusion/vq-f8.zip
wget -O models/first_stage_models/vq-f8-n256/model.zip https://ommer-lab.com/files/latent-diffusion/vq-f8-n256.zip
wget -O models/first_stage_models/vq-f16/model.zip https://ommer-lab.com/files/latent-diffusion/vq-f16.zip
cd models/first_stage_models/kl-f4
unzip -o model.zip
cd ../kl-f8
unzip -o model.zip
cd ../kl-f16
unzip -o model.zip
cd ../kl-f32
unzip -o model.zip
cd ../vq-f4
unzip -o model.zip
cd ../vq-f4-noattn
unzip -o model.zip
cd ../vq-f8
unzip -o model.zip
cd ../vq-f8-n256
unzip -o model.zip
cd ../vq-f16
unzip -o model.zip
cd ../..
\ No newline at end of file
#!/bin/bash
wget -O models/ldm/celeba256/celeba-256.zip https://ommer-lab.com/files/latent-diffusion/celeba.zip
wget -O models/ldm/ffhq256/ffhq-256.zip https://ommer-lab.com/files/latent-diffusion/ffhq.zip
wget -O models/ldm/lsun_churches256/lsun_churches-256.zip https://ommer-lab.com/files/latent-diffusion/lsun_churches.zip
wget -O models/ldm/lsun_beds256/lsun_beds-256.zip https://ommer-lab.com/files/latent-diffusion/lsun_bedrooms.zip
wget -O models/ldm/text2img256/model.zip https://ommer-lab.com/files/latent-diffusion/text2img.zip
wget -O models/ldm/cin256/model.zip https://ommer-lab.com/files/latent-diffusion/cin.zip
wget -O models/ldm/semantic_synthesis512/model.zip https://ommer-lab.com/files/latent-diffusion/semantic_synthesis.zip
wget -O models/ldm/semantic_synthesis256/model.zip https://ommer-lab.com/files/latent-diffusion/semantic_synthesis256.zip
wget -O models/ldm/bsr_sr/model.zip https://ommer-lab.com/files/latent-diffusion/sr_bsr.zip
wget -O models/ldm/layout2img-openimages256/model.zip https://ommer-lab.com/files/latent-diffusion/layout2img_model.zip
wget -O models/ldm/inpainting_big/model.zip https://ommer-lab.com/files/latent-diffusion/inpainting_big.zip
cd models/ldm/celeba256
unzip -o celeba-256.zip
cd ../ffhq256
unzip -o ffhq-256.zip
cd ../lsun_churches256
unzip -o lsun_churches-256.zip
cd ../lsun_beds256
unzip -o lsun_beds-256.zip
cd ../text2img256
unzip -o model.zip
cd ../cin256
unzip -o model.zip
cd ../semantic_synthesis512
unzip -o model.zip
cd ../semantic_synthesis256
unzip -o model.zip
cd ../bsr_sr
unzip -o model.zip
cd ../layout2img-openimages256
unzip -o model.zip
cd ../inpainting_big
unzip -o model.zip
cd ../..
"""make variations of input image"""
import argparse, os, sys, glob
import PIL
import torch
import numpy as np
from omegaconf import OmegaConf
from PIL import Image
from tqdm import tqdm, trange
from itertools import islice
from einops import rearrange, repeat
from torchvision.utils import make_grid
from torch import autocast
from contextlib import nullcontext
import time
from pytorch_lightning import seed_everything
from ldm.util import instantiate_from_config
from ldm.models.diffusion.ddim import DDIMSampler
from ldm.models.diffusion.plms import PLMSSampler
def chunk(it, size):
it = iter(it)
return iter(lambda: tuple(islice(it, size)), ())
def load_model_from_config(config, ckpt, verbose=False):
print(f"Loading model from {ckpt}")
pl_sd = torch.load(ckpt, map_location="cpu")
if "global_step" in pl_sd:
print(f"Global Step: {pl_sd['global_step']}")
sd = pl_sd["state_dict"]
model = instantiate_from_config(config.model)
m, u = model.load_state_dict(sd, strict=False)
if len(m) > 0 and verbose:
print("missing keys:")
print(m)
if len(u) > 0 and verbose:
print("unexpected keys:")
print(u)
model.cuda()
model.eval()
return model
def load_img(path):
image = Image.open(path).convert("RGB")
w, h = image.size
print(f"loaded input image of size ({w}, {h}) from {path}")
w, h = map(lambda x: x - x % 32, (w, h)) # resize to integer multiple of 32
image = image.resize((w, h), resample=PIL.Image.LANCZOS)
image = np.array(image).astype(np.float32) / 255.0
image = image[None].transpose(0, 3, 1, 2)
image = torch.from_numpy(image)
return 2.*image - 1.
def main():
parser = argparse.ArgumentParser()
parser.add_argument(
"--prompt",
type=str,
nargs="?",
default="a painting of a virus monster playing guitar",
help="the prompt to render"
)
parser.add_argument(
"--init-img",
type=str,
nargs="?",
help="path to the input image"
)
parser.add_argument(
"--outdir",
type=str,
nargs="?",
help="dir to write results to",
default="outputs/img2img-samples"
)
parser.add_argument(
"--skip_grid",
action='store_true',
help="do not save a grid, only individual samples. Helpful when evaluating lots of samples",
)
parser.add_argument(
"--skip_save",
action='store_true',
help="do not save indiviual samples. For speed measurements.",
)
parser.add_argument(
"--ddim_steps",
type=int,
default=50,
help="number of ddim sampling steps",
)
parser.add_argument(
"--plms",
action='store_true',
help="use plms sampling",
)
parser.add_argument(
"--fixed_code",
action='store_true',
help="if enabled, uses the same starting code across all samples ",
)
parser.add_argument(
"--ddim_eta",
type=float,
default=0.0,
help="ddim eta (eta=0.0 corresponds to deterministic sampling",
)
parser.add_argument(
"--n_iter",
type=int,
default=1,
help="sample this often",
)
parser.add_argument(
"--C",
type=int,
default=4,
help="latent channels",
)
parser.add_argument(
"--f",
type=int,
default=8,
help="downsampling factor, most often 8 or 16",
)
parser.add_argument(
"--n_samples",
type=int,
default=2,
help="how many samples to produce for each given prompt. A.k.a batch size",
)
parser.add_argument(
"--n_rows",
type=int,
default=0,
help="rows in the grid (default: n_samples)",
)
parser.add_argument(
"--scale",
type=float,
default=5.0,
help="unconditional guidance scale: eps = eps(x, empty) + scale * (eps(x, cond) - eps(x, empty))",
)
parser.add_argument(
"--strength",
type=float,
default=0.75,
help="strength for noising/unnoising. 1.0 corresponds to full destruction of information in init image",
)
parser.add_argument(
"--from-file",
type=str,
help="if specified, load prompts from this file",
)
parser.add_argument(
"--config",
type=str,
default="configs/stable-diffusion/v1-inference.yaml",
help="path to config which constructs model",
)
parser.add_argument(
"--ckpt",
type=str,
default="models/ldm/stable-diffusion-v1/model.ckpt",
help="path to checkpoint of model",
)
parser.add_argument(
"--seed",
type=int,
default=42,
help="the seed (for reproducible sampling)",
)
parser.add_argument(
"--precision",
type=str,
help="evaluate at this precision",
choices=["full", "autocast"],
default="autocast"
)
opt = parser.parse_args()
seed_everything(opt.seed)
config = OmegaConf.load(f"{opt.config}")
model = load_model_from_config(config, f"{opt.ckpt}")
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
model = model.to(device)
if opt.plms:
raise NotImplementedError("PLMS sampler not (yet) supported")
sampler = PLMSSampler(model)
else:
sampler = DDIMSampler(model)
os.makedirs(opt.outdir, exist_ok=True)
outpath = opt.outdir
batch_size = opt.n_samples
n_rows = opt.n_rows if opt.n_rows > 0 else batch_size
if not opt.from_file:
prompt = opt.prompt
assert prompt is not None
data = [batch_size * [prompt]]
else:
print(f"reading prompts from {opt.from_file}")
with open(opt.from_file, "r") as f:
data = f.read().splitlines()
data = list(chunk(data, batch_size))
sample_path = os.path.join(outpath, "samples")
os.makedirs(sample_path, exist_ok=True)
base_count = len(os.listdir(sample_path))
grid_count = len(os.listdir(outpath)) - 1
assert os.path.isfile(opt.init_img)
init_image = load_img(opt.init_img).to(device)
init_image = repeat(init_image, '1 ... -> b ...', b=batch_size)
init_latent = model.get_first_stage_encoding(model.encode_first_stage(init_image)) # move to latent space
sampler.make_schedule(ddim_num_steps=opt.ddim_steps, ddim_eta=opt.ddim_eta, verbose=False)
assert 0. <= opt.strength <= 1., 'can only work with strength in [0.0, 1.0]'
t_enc = int(opt.strength * opt.ddim_steps)
print(f"target t_enc is {t_enc} steps")
precision_scope = autocast if opt.precision == "autocast" else nullcontext
with torch.no_grad():
with precision_scope("cuda"):
with model.ema_scope():
tic = time.time()
all_samples = list()
for n in trange(opt.n_iter, desc="Sampling"):
for prompts in tqdm(data, desc="data"):
uc = None
if opt.scale != 1.0:
uc = model.get_learned_conditioning(batch_size * [""])
if isinstance(prompts, tuple):
prompts = list(prompts)
c = model.get_learned_conditioning(prompts)
# encode (scaled latent)
z_enc = sampler.stochastic_encode(init_latent, torch.tensor([t_enc]*batch_size).to(device))
# decode it
samples = sampler.decode(z_enc, c, t_enc, unconditional_guidance_scale=opt.scale,
unconditional_conditioning=uc,)
x_samples = model.decode_first_stage(samples)
x_samples = torch.clamp((x_samples + 1.0) / 2.0, min=0.0, max=1.0)
if not opt.skip_save:
for x_sample in x_samples:
x_sample = 255. * rearrange(x_sample.cpu().numpy(), 'c h w -> h w c')
Image.fromarray(x_sample.astype(np.uint8)).save(
os.path.join(sample_path, f"{base_count:05}.png"))
base_count += 1
all_samples.append(x_samples)
if not opt.skip_grid:
# additionally, save as grid
grid = torch.stack(all_samples, 0)
grid = rearrange(grid, 'n b c h w -> (n b) c h w')
grid = make_grid(grid, nrow=n_rows)
# to image
grid = 255. * rearrange(grid, 'c h w -> h w c').cpu().numpy()
Image.fromarray(grid.astype(np.uint8)).save(os.path.join(outpath, f'grid-{grid_count:04}.png'))
grid_count += 1
toc = time.time()
print(f"Your samples are ready and waiting for you here: \n{outpath} \n"
f" \nEnjoy.")
if __name__ == "__main__":
main()
import argparse, os, sys, glob
from omegaconf import OmegaConf
from PIL import Image
from tqdm import tqdm
import numpy as np
import torch
from main import instantiate_from_config
from ldm.models.diffusion.ddim import DDIMSampler
def make_batch(image, mask, device):
image = np.array(Image.open(image).convert("RGB"))
image = image.astype(np.float32)/255.0
image = image[None].transpose(0,3,1,2)
image = torch.from_numpy(image)
mask = np.array(Image.open(mask).convert("L"))
mask = mask.astype(np.float32)/255.0
mask = mask[None,None]
mask[mask < 0.5] = 0
mask[mask >= 0.5] = 1
mask = torch.from_numpy(mask)
masked_image = (1-mask)*image
batch = {"image": image, "mask": mask, "masked_image": masked_image}
for k in batch:
batch[k] = batch[k].to(device=device)
batch[k] = batch[k]*2.0-1.0
return batch
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--indir",
type=str,
nargs="?",
help="dir containing image-mask pairs (`example.png` and `example_mask.png`)",
)
parser.add_argument(
"--outdir",
type=str,
nargs="?",
help="dir to write results to",
)
parser.add_argument(
"--steps",
type=int,
default=50,
help="number of ddim sampling steps",
)
opt = parser.parse_args()
masks = sorted(glob.glob(os.path.join(opt.indir, "*_mask.png")))
images = [x.replace("_mask.png", ".png") for x in masks]
print(f"Found {len(masks)} inputs.")
config = OmegaConf.load("models/ldm/inpainting_big/config.yaml")
model = instantiate_from_config(config.model)
model.load_state_dict(torch.load("models/ldm/inpainting_big/last.ckpt")["state_dict"],
strict=False)
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
model = model.to(device)
sampler = DDIMSampler(model)
os.makedirs(opt.outdir, exist_ok=True)
with torch.no_grad():
with model.ema_scope():
for image, mask in tqdm(zip(images, masks)):
outpath = os.path.join(opt.outdir, os.path.split(image)[1])
batch = make_batch(image, mask, device=device)
# encode masked image and concat downsampled mask
c = model.cond_stage_model.encode(batch["masked_image"])
cc = torch.nn.functional.interpolate(batch["mask"],
size=c.shape[-2:])
c = torch.cat((c, cc), dim=1)
shape = (c.shape[1]-1,)+c.shape[2:]
samples_ddim, _ = sampler.sample(S=opt.steps,
conditioning=c,
batch_size=c.shape[0],
shape=shape,
verbose=False)
x_samples_ddim = model.decode_first_stage(samples_ddim)
image = torch.clamp((batch["image"]+1.0)/2.0,
min=0.0, max=1.0)
mask = torch.clamp((batch["mask"]+1.0)/2.0,
min=0.0, max=1.0)
predicted_image = torch.clamp((x_samples_ddim+1.0)/2.0,
min=0.0, max=1.0)
inpainted = (1-mask)*image+mask*predicted_image
inpainted = inpainted.cpu().numpy().transpose(0,2,3,1)[0]*255
Image.fromarray(inpainted.astype(np.uint8)).save(outpath)
import argparse, os, sys, glob
import clip
import torch
import torch.nn as nn
import numpy as np
from omegaconf import OmegaConf
from PIL import Image
from tqdm import tqdm, trange
from itertools import islice
from einops import rearrange, repeat
from torchvision.utils import make_grid
import scann
import time
from multiprocessing import cpu_count
from ldm.util import instantiate_from_config, parallel_data_prefetch
from ldm.models.diffusion.ddim import DDIMSampler
from ldm.models.diffusion.plms import PLMSSampler
from ldm.modules.encoders.modules import FrozenClipImageEmbedder, FrozenCLIPTextEmbedder
DATABASES = [
"openimages",
"artbench-art_nouveau",
"artbench-baroque",
"artbench-expressionism",
"artbench-impressionism",
"artbench-post_impressionism",
"artbench-realism",
"artbench-romanticism",
"artbench-renaissance",
"artbench-surrealism",
"artbench-ukiyo_e",
]
def chunk(it, size):
it = iter(it)
return iter(lambda: tuple(islice(it, size)), ())
def load_model_from_config(config, ckpt, verbose=False):
print(f"Loading model from {ckpt}")
pl_sd = torch.load(ckpt, map_location="cpu")
if "global_step" in pl_sd:
print(f"Global Step: {pl_sd['global_step']}")
sd = pl_sd["state_dict"]
model = instantiate_from_config(config.model)
m, u = model.load_state_dict(sd, strict=False)
if len(m) > 0 and verbose:
print("missing keys:")
print(m)
if len(u) > 0 and verbose:
print("unexpected keys:")
print(u)
model.cuda()
model.eval()
return model
class Searcher(object):
def __init__(self, database, retriever_version='ViT-L/14'):
assert database in DATABASES
# self.database = self.load_database(database)
self.database_name = database
self.searcher_savedir = f'data/rdm/searchers/{self.database_name}'
self.database_path = f'data/rdm/retrieval_databases/{self.database_name}'
self.retriever = self.load_retriever(version=retriever_version)
self.database = {'embedding': [],
'img_id': [],
'patch_coords': []}
self.load_database()
self.load_searcher()
def train_searcher(self, k,
metric='dot_product',
searcher_savedir=None):
print('Start training searcher')
searcher = scann.scann_ops_pybind.builder(self.database['embedding'] /
np.linalg.norm(self.database['embedding'], axis=1)[:, np.newaxis],
k, metric)
self.searcher = searcher.score_brute_force().build()
print('Finish training searcher')
if searcher_savedir is not None:
print(f'Save trained searcher under "{searcher_savedir}"')
os.makedirs(searcher_savedir, exist_ok=True)
self.searcher.serialize(searcher_savedir)
def load_single_file(self, saved_embeddings):
compressed = np.load(saved_embeddings)
self.database = {key: compressed[key] for key in compressed.files}
print('Finished loading of clip embeddings.')
def load_multi_files(self, data_archive):
out_data = {key: [] for key in self.database}
for d in tqdm(data_archive, desc=f'Loading datapool from {len(data_archive)} individual files.'):
for key in d.files:
out_data[key].append(d[key])
return out_data
def load_database(self):
print(f'Load saved patch embedding from "{self.database_path}"')
file_content = glob.glob(os.path.join(self.database_path, '*.npz'))
if len(file_content) == 1:
self.load_single_file(file_content[0])
elif len(file_content) > 1:
data = [np.load(f) for f in file_content]
prefetched_data = parallel_data_prefetch(self.load_multi_files, data,
n_proc=min(len(data), cpu_count()), target_data_type='dict')
self.database = {key: np.concatenate([od[key] for od in prefetched_data], axis=1)[0] for key in
self.database}
else:
raise ValueError(f'No npz-files in specified path "{self.database_path}" is this directory existing?')
print(f'Finished loading of retrieval database of length {self.database["embedding"].shape[0]}.')
def load_retriever(self, version='ViT-L/14', ):
model = FrozenClipImageEmbedder(model=version)
if torch.cuda.is_available():
model.cuda()
model.eval()
return model
def load_searcher(self):
print(f'load searcher for database {self.database_name} from {self.searcher_savedir}')
self.searcher = scann.scann_ops_pybind.load_searcher(self.searcher_savedir)
print('Finished loading searcher.')
def search(self, x, k):
if self.searcher is None and self.database['embedding'].shape[0] < 2e4:
self.train_searcher(k) # quickly fit searcher on the fly for small databases
assert self.searcher is not None, 'Cannot search with uninitialized searcher'
if isinstance(x, torch.Tensor):
x = x.detach().cpu().numpy()
if len(x.shape) == 3:
x = x[:, 0]
query_embeddings = x / np.linalg.norm(x, axis=1)[:, np.newaxis]
start = time.time()
nns, distances = self.searcher.search_batched(query_embeddings, final_num_neighbors=k)
end = time.time()
out_embeddings = self.database['embedding'][nns]
out_img_ids = self.database['img_id'][nns]
out_pc = self.database['patch_coords'][nns]
out = {'nn_embeddings': out_embeddings / np.linalg.norm(out_embeddings, axis=-1)[..., np.newaxis],
'img_ids': out_img_ids,
'patch_coords': out_pc,
'queries': x,
'exec_time': end - start,
'nns': nns,
'q_embeddings': query_embeddings}
return out
def __call__(self, x, n):
return self.search(x, n)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
# TODO: add n_neighbors and modes (text-only, text-image-retrieval, image-image retrieval etc)
# TODO: add 'image variation' mode when knn=0 but a single image is given instead of a text prompt?
parser.add_argument(
"--prompt",
type=str,
nargs="?",
default="a painting of a virus monster playing guitar",
help="the prompt to render"
)
parser.add_argument(
"--outdir",
type=str,
nargs="?",
help="dir to write results to",
default="outputs/txt2img-samples"
)
parser.add_argument(
"--skip_grid",
action='store_true',
help="do not save a grid, only individual samples. Helpful when evaluating lots of samples",
)
parser.add_argument(
"--ddim_steps",
type=int,
default=50,
help="number of ddim sampling steps",
)
parser.add_argument(
"--n_repeat",
type=int,
default=1,
help="number of repeats in CLIP latent space",
)
parser.add_argument(
"--plms",
action='store_true',
help="use plms sampling",
)
parser.add_argument(
"--ddim_eta",
type=float,
default=0.0,
help="ddim eta (eta=0.0 corresponds to deterministic sampling",
)
parser.add_argument(
"--n_iter",
type=int,
default=1,
help="sample this often",
)
parser.add_argument(
"--H",
type=int,
default=768,
help="image height, in pixel space",
)
parser.add_argument(
"--W",
type=int,
default=768,
help="image width, in pixel space",
)
parser.add_argument(
"--n_samples",
type=int,
default=3,
help="how many samples to produce for each given prompt. A.k.a batch size",
)
parser.add_argument(
"--n_rows",
type=int,
default=0,
help="rows in the grid (default: n_samples)",
)
parser.add_argument(
"--scale",
type=float,
default=5.0,
help="unconditional guidance scale: eps = eps(x, empty) + scale * (eps(x, cond) - eps(x, empty))",
)
parser.add_argument(
"--from-file",
type=str,
help="if specified, load prompts from this file",
)
parser.add_argument(
"--config",
type=str,
default="configs/retrieval-augmented-diffusion/768x768.yaml",
help="path to config which constructs model",
)
parser.add_argument(
"--ckpt",
type=str,
default="models/rdm/rdm768x768/model.ckpt",
help="path to checkpoint of model",
)
parser.add_argument(
"--clip_type",
type=str,
default="ViT-L/14",
help="which CLIP model to use for retrieval and NN encoding",
)
parser.add_argument(
"--database",
type=str,
default='artbench-surrealism',
choices=DATABASES,
help="The database used for the search, only applied when --use_neighbors=True",
)
parser.add_argument(
"--use_neighbors",
default=False,
action='store_true',
help="Include neighbors in addition to text prompt for conditioning",
)
parser.add_argument(
"--knn",
default=10,
type=int,
help="The number of included neighbors, only applied when --use_neighbors=True",
)
opt = parser.parse_args()
config = OmegaConf.load(f"{opt.config}")
model = load_model_from_config(config, f"{opt.ckpt}")
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
model = model.to(device)
clip_text_encoder = FrozenCLIPTextEmbedder(opt.clip_type).to(device)
if opt.plms:
sampler = PLMSSampler(model)
else:
sampler = DDIMSampler(model)
os.makedirs(opt.outdir, exist_ok=True)
outpath = opt.outdir
batch_size = opt.n_samples
n_rows = opt.n_rows if opt.n_rows > 0 else batch_size
if not opt.from_file:
prompt = opt.prompt
assert prompt is not None
data = [batch_size * [prompt]]
else:
print(f"reading prompts from {opt.from_file}")
with open(opt.from_file, "r") as f:
data = f.read().splitlines()
data = list(chunk(data, batch_size))
sample_path = os.path.join(outpath, "samples")
os.makedirs(sample_path, exist_ok=True)
base_count = len(os.listdir(sample_path))
grid_count = len(os.listdir(outpath)) - 1
print(f"sampling scale for cfg is {opt.scale:.2f}")
searcher = None
if opt.use_neighbors:
searcher = Searcher(opt.database)
with torch.no_grad():
with model.ema_scope():
for n in trange(opt.n_iter, desc="Sampling"):
all_samples = list()
for prompts in tqdm(data, desc="data"):
print("sampling prompts:", prompts)
if isinstance(prompts, tuple):
prompts = list(prompts)
c = clip_text_encoder.encode(prompts)
uc = None
if searcher is not None:
nn_dict = searcher(c, opt.knn)
c = torch.cat([c, torch.from_numpy(nn_dict['nn_embeddings']).cuda()], dim=1)
if opt.scale != 1.0:
uc = torch.zeros_like(c)
if isinstance(prompts, tuple):
prompts = list(prompts)
shape = [16, opt.H // 16, opt.W // 16] # note: currently hardcoded for f16 model
samples_ddim, _ = sampler.sample(S=opt.ddim_steps,
conditioning=c,
batch_size=c.shape[0],
shape=shape,
verbose=False,
unconditional_guidance_scale=opt.scale,
unconditional_conditioning=uc,
eta=opt.ddim_eta,
)
x_samples_ddim = model.decode_first_stage(samples_ddim)
x_samples_ddim = torch.clamp((x_samples_ddim + 1.0) / 2.0, min=0.0, max=1.0)
for x_sample in x_samples_ddim:
x_sample = 255. * rearrange(x_sample.cpu().numpy(), 'c h w -> h w c')
Image.fromarray(x_sample.astype(np.uint8)).save(
os.path.join(sample_path, f"{base_count:05}.png"))
base_count += 1
all_samples.append(x_samples_ddim)
if not opt.skip_grid:
# additionally, save as grid
grid = torch.stack(all_samples, 0)
grid = rearrange(grid, 'n b c h w -> (n b) c h w')
grid = make_grid(grid, nrow=n_rows)
# to image
grid = 255. * rearrange(grid, 'c h w -> h w c').cpu().numpy()
Image.fromarray(grid.astype(np.uint8)).save(os.path.join(outpath, f'grid-{grid_count:04}.png'))
grid_count += 1
print(f"Your samples are ready and waiting for you here: \n{outpath} \nEnjoy.")
This source diff could not be displayed because it is too large. You can view the blob instead.
import argparse, os, sys, glob, datetime, yaml
import torch
import time
import numpy as np
from tqdm import trange
from omegaconf import OmegaConf
from PIL import Image
from ldm.models.diffusion.ddim import DDIMSampler
from ldm.util import instantiate_from_config
rescale = lambda x: (x + 1.) / 2.
def custom_to_pil(x):
x = x.detach().cpu()
x = torch.clamp(x, -1., 1.)
x = (x + 1.) / 2.
x = x.permute(1, 2, 0).numpy()
x = (255 * x).astype(np.uint8)
x = Image.fromarray(x)
if not x.mode == "RGB":
x = x.convert("RGB")
return x
def custom_to_np(x):
# saves the batch in adm style as in https://github.com/openai/guided-diffusion/blob/main/scripts/image_sample.py
sample = x.detach().cpu()
sample = ((sample + 1) * 127.5).clamp(0, 255).to(torch.uint8)
sample = sample.permute(0, 2, 3, 1)
sample = sample.contiguous()
return sample
def logs2pil(logs, keys=["sample"]):
imgs = dict()
for k in logs:
try:
if len(logs[k].shape) == 4:
img = custom_to_pil(logs[k][0, ...])
elif len(logs[k].shape) == 3:
img = custom_to_pil(logs[k])
else:
print(f"Unknown format for key {k}. ")
img = None
except:
img = None
imgs[k] = img
return imgs
@torch.no_grad()
def convsample(model, shape, return_intermediates=True,
verbose=True,
make_prog_row=False):
if not make_prog_row:
return model.p_sample_loop(None, shape,
return_intermediates=return_intermediates, verbose=verbose)
else:
return model.progressive_denoising(
None, shape, verbose=True
)
@torch.no_grad()
def convsample_ddim(model, steps, shape, eta=1.0
):
ddim = DDIMSampler(model)
bs = shape[0]
shape = shape[1:]
samples, intermediates = ddim.sample(steps, batch_size=bs, shape=shape, eta=eta, verbose=False,)
return samples, intermediates
@torch.no_grad()
def make_convolutional_sample(model, batch_size, vanilla=False, custom_steps=None, eta=1.0,):
log = dict()
shape = [batch_size,
model.model.diffusion_model.in_channels,
model.model.diffusion_model.image_size,
model.model.diffusion_model.image_size]
with model.ema_scope("Plotting"):
t0 = time.time()
if vanilla:
sample, progrow = convsample(model, shape,
make_prog_row=True)
else:
sample, intermediates = convsample_ddim(model, steps=custom_steps, shape=shape,
eta=eta)
t1 = time.time()
x_sample = model.decode_first_stage(sample)
log["sample"] = x_sample
log["time"] = t1 - t0
log['throughput'] = sample.shape[0] / (t1 - t0)
print(f'Throughput for this batch: {log["throughput"]}')
return log
def run(model, logdir, batch_size=50, vanilla=False, custom_steps=None, eta=None, n_samples=50000, nplog=None):
if vanilla:
print(f'Using Vanilla DDPM sampling with {model.num_timesteps} sampling steps.')
else:
print(f'Using DDIM sampling with {custom_steps} sampling steps and eta={eta}')
tstart = time.time()
n_saved = len(glob.glob(os.path.join(logdir,'*.png')))-1
# path = logdir
if model.cond_stage_model is None:
all_images = []
print(f"Running unconditional sampling for {n_samples} samples")
for _ in trange(n_samples // batch_size, desc="Sampling Batches (unconditional)"):
logs = make_convolutional_sample(model, batch_size=batch_size,
vanilla=vanilla, custom_steps=custom_steps,
eta=eta)
n_saved = save_logs(logs, logdir, n_saved=n_saved, key="sample")
all_images.extend([custom_to_np(logs["sample"])])
if n_saved >= n_samples:
print(f'Finish after generating {n_saved} samples')
break
all_img = np.concatenate(all_images, axis=0)
all_img = all_img[:n_samples]
shape_str = "x".join([str(x) for x in all_img.shape])
nppath = os.path.join(nplog, f"{shape_str}-samples.npz")
np.savez(nppath, all_img)
else:
raise NotImplementedError('Currently only sampling for unconditional models supported.')
print(f"sampling of {n_saved} images finished in {(time.time() - tstart) / 60.:.2f} minutes.")
def save_logs(logs, path, n_saved=0, key="sample", np_path=None):
for k in logs:
if k == key:
batch = logs[key]
if np_path is None:
for x in batch:
img = custom_to_pil(x)
imgpath = os.path.join(path, f"{key}_{n_saved:06}.png")
img.save(imgpath)
n_saved += 1
else:
npbatch = custom_to_np(batch)
shape_str = "x".join([str(x) for x in npbatch.shape])
nppath = os.path.join(np_path, f"{n_saved}-{shape_str}-samples.npz")
np.savez(nppath, npbatch)
n_saved += npbatch.shape[0]
return n_saved
def get_parser():
parser = argparse.ArgumentParser()
parser.add_argument(
"-r",
"--resume",
type=str,
nargs="?",
help="load from logdir or checkpoint in logdir",
)
parser.add_argument(
"-n",
"--n_samples",
type=int,
nargs="?",
help="number of samples to draw",
default=50000
)
parser.add_argument(
"-e",
"--eta",
type=float,
nargs="?",
help="eta for ddim sampling (0.0 yields deterministic sampling)",
default=1.0
)
parser.add_argument(
"-v",
"--vanilla_sample",
default=False,
action='store_true',
help="vanilla sampling (default option is DDIM sampling)?",
)
parser.add_argument(
"-l",
"--logdir",
type=str,
nargs="?",
help="extra logdir",
default="none"
)
parser.add_argument(
"-c",
"--custom_steps",
type=int,
nargs="?",
help="number of steps for ddim and fastdpm sampling",
default=50
)
parser.add_argument(
"--batch_size",
type=int,
nargs="?",
help="the bs",
default=10
)
return parser
def load_model_from_config(config, sd):
model = instantiate_from_config(config)
model.load_state_dict(sd,strict=False)
model.cuda()
model.eval()
return model
def load_model(config, ckpt, gpu, eval_mode):
if ckpt:
print(f"Loading model from {ckpt}")
pl_sd = torch.load(ckpt, map_location="cpu")
global_step = pl_sd["global_step"]
else:
pl_sd = {"state_dict": None}
global_step = None
model = load_model_from_config(config.model,
pl_sd["state_dict"])
return model, global_step
if __name__ == "__main__":
now = datetime.datetime.now().strftime("%Y-%m-%d-%H-%M-%S")
sys.path.append(os.getcwd())
command = " ".join(sys.argv)
parser = get_parser()
opt, unknown = parser.parse_known_args()
ckpt = None
if not os.path.exists(opt.resume):
raise ValueError("Cannot find {}".format(opt.resume))
if os.path.isfile(opt.resume):
# paths = opt.resume.split("/")
try:
logdir = '/'.join(opt.resume.split('/')[:-1])
# idx = len(paths)-paths[::-1].index("logs")+1
print(f'Logdir is {logdir}')
except ValueError:
paths = opt.resume.split("/")
idx = -2 # take a guess: path/to/logdir/checkpoints/model.ckpt
logdir = "/".join(paths[:idx])
ckpt = opt.resume
else:
assert os.path.isdir(opt.resume), f"{opt.resume} is not a directory"
logdir = opt.resume.rstrip("/")
ckpt = os.path.join(logdir, "model.ckpt")
base_configs = sorted(glob.glob(os.path.join(logdir, "config.yaml")))
opt.base = base_configs
configs = [OmegaConf.load(cfg) for cfg in opt.base]
cli = OmegaConf.from_dotlist(unknown)
config = OmegaConf.merge(*configs, cli)
gpu = True
eval_mode = True
if opt.logdir != "none":
locallog = logdir.split(os.sep)[-1]
if locallog == "": locallog = logdir.split(os.sep)[-2]
print(f"Switching logdir from '{logdir}' to '{os.path.join(opt.logdir, locallog)}'")
logdir = os.path.join(opt.logdir, locallog)
print(config)
model, global_step = load_model(config, ckpt, gpu, eval_mode)
print(f"global step: {global_step}")
print(75 * "=")
print("logging to:")
logdir = os.path.join(logdir, "samples", f"{global_step:08}", now)
imglogdir = os.path.join(logdir, "img")
numpylogdir = os.path.join(logdir, "numpy")
os.makedirs(imglogdir)
os.makedirs(numpylogdir)
print(logdir)
print(75 * "=")
# write config out
sampling_file = os.path.join(logdir, "sampling_config.yaml")
sampling_conf = vars(opt)
with open(sampling_file, 'w') as f:
yaml.dump(sampling_conf, f, default_flow_style=False)
print(sampling_conf)
run(model, imglogdir, eta=opt.eta,
vanilla=opt.vanilla_sample, n_samples=opt.n_samples, custom_steps=opt.custom_steps,
batch_size=opt.batch_size, nplog=numpylogdir)
print("done.")
import cv2
import fire
from imwatermark import WatermarkDecoder
def testit(img_path):
bgr = cv2.imread(img_path)
decoder = WatermarkDecoder('bytes', 136)
watermark = decoder.decode(bgr, 'dwtDct')
try:
dec = watermark.decode('utf-8')
except:
dec = "null"
print(dec)
if __name__ == "__main__":
fire.Fire(testit)
\ No newline at end of file
import os, sys
import numpy as np
import scann
import argparse
import glob
from multiprocessing import cpu_count
from tqdm import tqdm
from ldm.util import parallel_data_prefetch
def search_bruteforce(searcher):
return searcher.score_brute_force().build()
def search_partioned_ah(searcher, dims_per_block, aiq_threshold, reorder_k,
partioning_trainsize, num_leaves, num_leaves_to_search):
return searcher.tree(num_leaves=num_leaves,
num_leaves_to_search=num_leaves_to_search,
training_sample_size=partioning_trainsize). \
score_ah(dims_per_block, anisotropic_quantization_threshold=aiq_threshold).reorder(reorder_k).build()
def search_ah(searcher, dims_per_block, aiq_threshold, reorder_k):
return searcher.score_ah(dims_per_block, anisotropic_quantization_threshold=aiq_threshold).reorder(
reorder_k).build()
def load_datapool(dpath):
def load_single_file(saved_embeddings):
compressed = np.load(saved_embeddings)
database = {key: compressed[key] for key in compressed.files}
return database
def load_multi_files(data_archive):
database = {key: [] for key in data_archive[0].files}
for d in tqdm(data_archive, desc=f'Loading datapool from {len(data_archive)} individual files.'):
for key in d.files:
database[key].append(d[key])
return database
print(f'Load saved patch embedding from "{dpath}"')
file_content = glob.glob(os.path.join(dpath, '*.npz'))
if len(file_content) == 1:
data_pool = load_single_file(file_content[0])
elif len(file_content) > 1:
data = [np.load(f) for f in file_content]
prefetched_data = parallel_data_prefetch(load_multi_files, data,
n_proc=min(len(data), cpu_count()), target_data_type='dict')
data_pool = {key: np.concatenate([od[key] for od in prefetched_data], axis=1)[0] for key in prefetched_data[0].keys()}
else:
raise ValueError(f'No npz-files in specified path "{dpath}" is this directory existing?')
print(f'Finished loading of retrieval database of length {data_pool["embedding"].shape[0]}.')
return data_pool
def train_searcher(opt,
metric='dot_product',
partioning_trainsize=None,
reorder_k=None,
# todo tune
aiq_thld=0.2,
dims_per_block=2,
num_leaves=None,
num_leaves_to_search=None,):
data_pool = load_datapool(opt.database)
k = opt.knn
if not reorder_k:
reorder_k = 2 * k
# normalize
# embeddings =
searcher = scann.scann_ops_pybind.builder(data_pool['embedding'] / np.linalg.norm(data_pool['embedding'], axis=1)[:, np.newaxis], k, metric)
pool_size = data_pool['embedding'].shape[0]
print(*(['#'] * 100))
print('Initializing scaNN searcher with the following values:')
print(f'k: {k}')
print(f'metric: {metric}')
print(f'reorder_k: {reorder_k}')
print(f'anisotropic_quantization_threshold: {aiq_thld}')
print(f'dims_per_block: {dims_per_block}')
print(*(['#'] * 100))
print('Start training searcher....')
print(f'N samples in pool is {pool_size}')
# this reflects the recommended design choices proposed at
# https://github.com/google-research/google-research/blob/aca5f2e44e301af172590bb8e65711f0c9ee0cfd/scann/docs/algorithms.md
if pool_size < 2e4:
print('Using brute force search.')
searcher = search_bruteforce(searcher)
elif 2e4 <= pool_size and pool_size < 1e5:
print('Using asymmetric hashing search and reordering.')
searcher = search_ah(searcher, dims_per_block, aiq_thld, reorder_k)
else:
print('Using using partioning, asymmetric hashing search and reordering.')
if not partioning_trainsize:
partioning_trainsize = data_pool['embedding'].shape[0] // 10
if not num_leaves:
num_leaves = int(np.sqrt(pool_size))
if not num_leaves_to_search:
num_leaves_to_search = max(num_leaves // 20, 1)
print('Partitioning params:')
print(f'num_leaves: {num_leaves}')
print(f'num_leaves_to_search: {num_leaves_to_search}')
# self.searcher = self.search_ah(searcher, dims_per_block, aiq_thld, reorder_k)
searcher = search_partioned_ah(searcher, dims_per_block, aiq_thld, reorder_k,
partioning_trainsize, num_leaves, num_leaves_to_search)
print('Finish training searcher')
searcher_savedir = opt.target_path
os.makedirs(searcher_savedir, exist_ok=True)
searcher.serialize(searcher_savedir)
print(f'Saved trained searcher under "{searcher_savedir}"')
if __name__ == '__main__':
sys.path.append(os.getcwd())
parser = argparse.ArgumentParser()
parser.add_argument('--database',
'-d',
default='data/rdm/retrieval_databases/openimages',
type=str,
help='path to folder containing the clip feature of the database')
parser.add_argument('--target_path',
'-t',
default='data/rdm/searchers/openimages',
type=str,
help='path to the target folder where the searcher shall be stored.')
parser.add_argument('--knn',
'-k',
default=20,
type=int,
help='number of nearest neighbors, for which the searcher shall be optimized')
opt, _ = parser.parse_known_args()
train_searcher(opt,)
\ No newline at end of file
import argparse, os, sys, glob
import cv2
import torch
import numpy as np
from omegaconf import OmegaConf
from PIL import Image
from tqdm import tqdm, trange
from imwatermark import WatermarkEncoder
from itertools import islice
from einops import rearrange
from torchvision.utils import make_grid
import time
from pytorch_lightning import seed_everything
from torch import autocast
from contextlib import contextmanager, nullcontext
from ldm.util import instantiate_from_config
from ldm.models.diffusion.ddim import DDIMSampler
from ldm.models.diffusion.plms import PLMSSampler
from ldm.models.diffusion.dpm_solver import DPMSolverSampler
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
from transformers import AutoFeatureExtractor
# load safety model
safety_model_id = "stable-diffusion-safety-checker"
safety_feature_extractor = AutoFeatureExtractor.from_pretrained(safety_model_id)
safety_checker = StableDiffusionSafetyChecker.from_pretrained(safety_model_id)
def chunk(it, size):
it = iter(it)
return iter(lambda: tuple(islice(it, size)), ())
def numpy_to_pil(images):
"""
Convert a numpy image or a batch of images to a PIL image.
"""
if images.ndim == 3:
images = images[None, ...]
images = (images * 255).round().astype("uint8")
pil_images = [Image.fromarray(image) for image in images]
return pil_images
def load_model_from_config(config, ckpt, verbose=False):
print(f"Loading model from {ckpt}")
pl_sd = torch.load(ckpt, map_location="cpu")
if "global_step" in pl_sd:
print(f"Global Step: {pl_sd['global_step']}")
sd = pl_sd["state_dict"]
model = instantiate_from_config(config.model)
m, u = model.load_state_dict(sd, strict=False)
if len(m) > 0 and verbose:
print("missing keys:")
print(m)
if len(u) > 0 and verbose:
print("unexpected keys:")
print(u)
model.cuda()
model.eval()
return model
def put_watermark(img, wm_encoder=None):
if wm_encoder is not None:
img = cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR)
img = wm_encoder.encode(img, 'dwtDct')
img = Image.fromarray(img[:, :, ::-1])
return img
def load_replacement(x):
try:
hwc = x.shape
y = Image.open("assets/rick.jpeg").convert("RGB").resize((hwc[1], hwc[0]))
y = (np.array(y)/255.0).astype(x.dtype)
assert y.shape == x.shape
return y
except Exception:
return x
def check_safety(x_image):
safety_checker_input = safety_feature_extractor(numpy_to_pil(x_image), return_tensors="pt")
x_checked_image, has_nsfw_concept = safety_checker(images=x_image, clip_input=safety_checker_input.pixel_values)
assert x_checked_image.shape[0] == len(has_nsfw_concept)
for i in range(len(has_nsfw_concept)):
if has_nsfw_concept[i]:
x_checked_image[i] = load_replacement(x_checked_image[i])
return x_checked_image, has_nsfw_concept
def main():
parser = argparse.ArgumentParser()
parser.add_argument(
"--prompt",
type=str,
nargs="?",
default="a painting of a virus monster playing guitar",
help="the prompt to render"
)
parser.add_argument(
"--outdir",
type=str,
nargs="?",
help="dir to write results to",
default="outputs/txt2img-samples"
)
parser.add_argument(
"--skip_grid",
action='store_true',
help="do not save a grid, only individual samples. Helpful when evaluating lots of samples",
)
parser.add_argument(
"--skip_save",
action='store_true',
help="do not save individual samples. For speed measurements.",
)
parser.add_argument(
"--ddim_steps",
type=int,
default=50,
help="number of ddim sampling steps",
)
parser.add_argument(
"--plms",
action='store_true',
help="use plms sampling",
)
parser.add_argument(
"--dpm_solver",
action='store_true',
help="use dpm_solver sampling",
)
parser.add_argument(
"--laion400m",
action='store_true',
help="uses the LAION400M model",
)
parser.add_argument(
"--fixed_code",
action='store_true',
help="if enabled, uses the same starting code across samples ",
)
parser.add_argument(
"--ddim_eta",
type=float,
default=0.0,
help="ddim eta (eta=0.0 corresponds to deterministic sampling",
)
parser.add_argument(
"--n_iter",
type=int,
default=2,
help="sample this often",
)
parser.add_argument(
"--H",
type=int,
default=512,
help="image height, in pixel space",
)
parser.add_argument(
"--W",
type=int,
default=512,
help="image width, in pixel space",
)
parser.add_argument(
"--C",
type=int,
default=4,
help="latent channels",
)
parser.add_argument(
"--f",
type=int,
default=8,
help="downsampling factor",
)
parser.add_argument(
"--n_samples",
type=int,
default=3,
help="how many samples to produce for each given prompt. A.k.a. batch size",
)
parser.add_argument(
"--n_rows",
type=int,
default=0,
help="rows in the grid (default: n_samples)",
)
parser.add_argument(
"--scale",
type=float,
default=7.5,
help="unconditional guidance scale: eps = eps(x, empty) + scale * (eps(x, cond) - eps(x, empty))",
)
parser.add_argument(
"--from-file",
type=str,
help="if specified, load prompts from this file",
)
parser.add_argument(
"--config",
type=str,
default="configs/stable-diffusion/v1-inference.yaml",
help="path to config which constructs model",
)
parser.add_argument(
"--ckpt",
type=str,
default="models/ldm/stable-diffusion-v1/model.ckpt",
help="path to checkpoint of model",
)
parser.add_argument(
"--seed",
type=int,
default=42,
help="the seed (for reproducible sampling)",
)
parser.add_argument(
"--precision",
type=str,
help="evaluate at this precision",
choices=["full", "autocast"],
default="autocast"
)
opt = parser.parse_args()
if opt.laion400m:
print("Falling back to LAION 400M model...")
opt.config = "configs/latent-diffusion/txt2img-1p4B-eval.yaml"
opt.ckpt = "models/ldm/text2img-large/model.ckpt"
opt.outdir = "outputs/txt2img-samples-laion400m"
seed_everything(opt.seed)
config = OmegaConf.load(f"{opt.config}")
model = load_model_from_config(config, f"{opt.ckpt}")
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
model = model.to(device)
if opt.dpm_solver:
sampler = DPMSolverSampler(model)
elif opt.plms:
sampler = PLMSSampler(model)
else:
sampler = DDIMSampler(model)
os.makedirs(opt.outdir, exist_ok=True)
outpath = opt.outdir
print("Creating invisible watermark encoder (see https://github.com/ShieldMnt/invisible-watermark)...")
wm = "StableDiffusionV1"
wm_encoder = WatermarkEncoder()
wm_encoder.set_watermark('bytes', wm.encode('utf-8'))
batch_size = opt.n_samples
n_rows = opt.n_rows if opt.n_rows > 0 else batch_size
if not opt.from_file:
prompt = opt.prompt
assert prompt is not None
data = [batch_size * [prompt]]
else:
print(f"reading prompts from {opt.from_file}")
with open(opt.from_file, "r") as f:
data = f.read().splitlines()
data = list(chunk(data, batch_size))
sample_path = os.path.join(outpath, "samples")
os.makedirs(sample_path, exist_ok=True)
base_count = len(os.listdir(sample_path))
grid_count = len(os.listdir(outpath)) - 1
start_code = None
if opt.fixed_code:
start_code = torch.randn([opt.n_samples, opt.C, opt.H // opt.f, opt.W // opt.f], device=device)
precision_scope = autocast if opt.precision=="autocast" else nullcontext
with torch.no_grad():
with precision_scope("cuda"):
with model.ema_scope():
tic = time.time()
all_samples = list()
for n in trange(opt.n_iter, desc="Sampling"):
for prompts in tqdm(data, desc="data"):
uc = None
if opt.scale != 1.0:
uc = model.get_learned_conditioning(batch_size * [""])
if isinstance(prompts, tuple):
prompts = list(prompts)
c = model.get_learned_conditioning(prompts)
shape = [opt.C, opt.H // opt.f, opt.W // opt.f]
samples_ddim, _ = sampler.sample(S=opt.ddim_steps,
conditioning=c,
batch_size=opt.n_samples,
shape=shape,
verbose=False,
unconditional_guidance_scale=opt.scale,
unconditional_conditioning=uc,
eta=opt.ddim_eta,
x_T=start_code)
x_samples_ddim = model.decode_first_stage(samples_ddim)
x_samples_ddim = torch.clamp((x_samples_ddim + 1.0) / 2.0, min=0.0, max=1.0)
x_samples_ddim = x_samples_ddim.cpu().permute(0, 2, 3, 1).numpy()
x_checked_image, has_nsfw_concept = check_safety(x_samples_ddim)
x_checked_image_torch = torch.from_numpy(x_checked_image).permute(0, 3, 1, 2)
if not opt.skip_save:
for x_sample in x_checked_image_torch:
x_sample = 255. * rearrange(x_sample.cpu().numpy(), 'c h w -> h w c')
img = Image.fromarray(x_sample.astype(np.uint8))
img = put_watermark(img, wm_encoder)
img.save(os.path.join(sample_path, f"{base_count:05}.png"))
base_count += 1
if not opt.skip_grid:
all_samples.append(x_checked_image_torch)
if not opt.skip_grid:
# additionally, save as grid
grid = torch.stack(all_samples, 0)
grid = rearrange(grid, 'n b c h w -> (n b) c h w')
grid = make_grid(grid, nrow=n_rows)
# to image
grid = 255. * rearrange(grid, 'c h w -> h w c').cpu().numpy()
img = Image.fromarray(grid.astype(np.uint8))
img = put_watermark(img, wm_encoder)
img.save(os.path.join(outpath, f'grid-{grid_count:04}.png'))
grid_count += 1
toc = time.time()
print(f"Your samples are ready and waiting for you here: \n{outpath} \n"
f" \nEnjoy.")
if __name__ == "__main__":
main()
from setuptools import setup, find_packages
setup(
name='latent-diffusion',
version='0.0.1',
description='',
packages=find_packages(),
install_requires=[
'torch',
'numpy',
'tqdm',
],
)
\ No newline at end of file
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment