# Copyright (c) Meta Platforms, Inc. and affiliates. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import os import click import torch from aitemplate.testing.benchmark_pt import benchmark_torch_function from timm.models.vision_transformer import vit_base_patch16_224, vit_large_patch16_384 def create_vit(model_name): if model_name == "vit_base_patch16_224": model_path = "./vit_base_patch16_224.augreg2_in21k_ft_in1k/pytorch_model.bin" model = vit_base_patch16_224(pretrained=True, pretrained_path=model_path).cuda().half() elif model_name == "vit_large_patch16_384": model_path = "./vit_large_patch16_384.augreg_in21k_ft_in1k/pytorch_model.bin" model = vit_large_patch16_384(pretrained=True, pretrained_path=model_path).cuda().half() return model def benchmark(model_name, batch_size, img_size, model): if model_name == "vit_base_patch16_224": img_size = 224 elif model_name == "vit_large_patch16_384": img_size = 384 with torch.inference_mode(): input_shape = (batch_size, 3, img_size, img_size) input_data = torch.randn(input_shape).cuda().half() # warm up benchmark_torch_function(100, model, input_data) # benchmark t = benchmark_torch_function(100, model, input_data) print("batch_size: {}, time: {}".format(batch_size, t)) dev_flag = os.environ.get("HIP_VISIBLE_DEVICES", "-1") dev_flag = dev_flag.replace(",", "_") with open(f"{model_name}_pt_benchmark_dev_{dev_flag}.txt", "a") as f: f.write("batch_size: {}, latency: {}\n".format(batch_size, t)) @click.command() @click.option("--model-name", type=str, default="vit_base_patch16_224") @click.option("--batch-size", default=0, type=int) def main(model_name, batch_size): img_size = 224 if model_name == "vit_base_patch16_224": img_size = 224 elif model_name == "vit_large_patch16_384": img_size = 384 else: raise NotImplementedError model = create_vit(model_name) if batch_size == 0: for batch_size in [1, 2, 4, 8, 16, 32, 64, 128, 256]: benchmark(model_name, batch_size, img_size, model) else: benchmark(model_name, batch_size, img_size, model) if __name__ == "__main__": main()