""" Creates a MobileNetV3 Model as defined in: Andrew Howard, Mark Sandler, Grace Chu, Liang-Chieh Chen, Bo Chen, Mingxing Tan, Weijun Wang, Yukun Zhu, Ruoming Pang, Vijay Vasudevan, Quoc V. Le, Hartwig Adam. (2019). Searching for MobileNetV3 arXiv preprint arXiv:1905.02244. @ Credit from https://github.com/d-li14/mobilenetv3.pytorch @ Modified by Chakkrit Termritthikun (https://github.com/chakkritte) """ import torch.nn as nn import math from ssd.modeling import registry from ssd.utils.model_zoo import load_state_dict_from_url model_urls = { 'mobilenet_v3': 'https://github.com/d-li14/mobilenetv3.pytorch/raw/master/pretrained/mobilenetv3-large-1cd25616.pth', } def _make_divisible(v, divisor, min_value=None): """ This function is taken from the original tf repo. It ensures that all layers have a channel number that is divisible by 8 It can be seen here: https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet/mobilenet.py :param v: :param divisor: :param min_value: :return: """ if min_value is None: min_value = divisor new_v = max(min_value, int(v + divisor / 2) // divisor * divisor) # Make sure that round down does not go down by more than 10%. if new_v < 0.9 * v: new_v += divisor return new_v class h_sigmoid(nn.Module): def __init__(self, inplace=True): super(h_sigmoid, self).__init__() self.relu = nn.ReLU6(inplace=inplace) def forward(self, x): return self.relu(x + 3) / 6 class h_swish(nn.Module): def __init__(self, inplace=True): super(h_swish, self).__init__() self.sigmoid = h_sigmoid(inplace=inplace) def forward(self, x): return x * self.sigmoid(x) class SELayer(nn.Module): def __init__(self, channel, reduction=4): super(SELayer, self).__init__() self.avg_pool = nn.AdaptiveAvgPool2d(1) self.fc = nn.Sequential( nn.Linear(channel, _make_divisible(channel // reduction, 8)), nn.ReLU(inplace=True), nn.Linear(_make_divisible(channel // reduction, 8), channel), h_sigmoid() ) def forward(self, x): b, c, _, _ = x.size() y = self.avg_pool(x).view(b, c) y = self.fc(y).view(b, c, 1, 1) return x * y def conv_3x3_bn(inp, oup, stride): return nn.Sequential( nn.Conv2d(inp, oup, 3, stride, 1, bias=False), nn.BatchNorm2d(oup), h_swish() ) def conv_1x1_bn(inp, oup): return nn.Sequential( nn.Conv2d(inp, oup, 1, 1, 0, bias=False), nn.BatchNorm2d(oup), h_swish() ) class InvertedResidual(nn.Module): def __init__(self, inp, hidden_dim, oup, kernel_size, stride, use_se, use_hs): super(InvertedResidual, self).__init__() assert stride in [1, 2] self.identity = stride == 1 and inp == oup if inp == hidden_dim: self.conv = nn.Sequential( # dw nn.Conv2d(hidden_dim, hidden_dim, kernel_size, stride, (kernel_size - 1) // 2, groups=hidden_dim, bias=False), nn.BatchNorm2d(hidden_dim), h_swish() if use_hs else nn.ReLU(inplace=True), # Squeeze-and-Excite SELayer(hidden_dim) if use_se else nn.Identity(), # pw-linear nn.Conv2d(hidden_dim, oup, 1, 1, 0, bias=False), nn.BatchNorm2d(oup), ) else: self.conv = nn.Sequential( # pw nn.Conv2d(inp, hidden_dim, 1, 1, 0, bias=False), nn.BatchNorm2d(hidden_dim), h_swish() if use_hs else nn.ReLU(inplace=True), # dw nn.Conv2d(hidden_dim, hidden_dim, kernel_size, stride, (kernel_size - 1) // 2, groups=hidden_dim, bias=False), nn.BatchNorm2d(hidden_dim), # Squeeze-and-Excite SELayer(hidden_dim) if use_se else nn.Identity(), h_swish() if use_hs else nn.ReLU(inplace=True), # pw-linear nn.Conv2d(hidden_dim, oup, 1, 1, 0, bias=False), nn.BatchNorm2d(oup), ) def forward(self, x): if self.identity: return x + self.conv(x) else: return self.conv(x) class MobileNetV3(nn.Module): def __init__(self, mode='large', num_classes=1000, width_mult=1.): super(MobileNetV3, self).__init__() # setting of inverted residual blocks self.cfgs = [ # k, t, c, SE, HS, s [3, 1, 16, 0, 0, 1], [3, 4, 24, 0, 0, 2], [3, 3, 24, 0, 0, 1], [5, 3, 40, 1, 0, 2], [5, 3, 40, 1, 0, 1], [5, 3, 40, 1, 0, 1], [3, 6, 80, 0, 1, 2], [3, 2.5, 80, 0, 1, 1], [3, 2.3, 80, 0, 1, 1], [3, 2.3, 80, 0, 1, 1], [3, 6, 112, 1, 1, 1], [3, 6, 112, 1, 1, 1], [5, 6, 160, 1, 1, 2], [5, 6, 160, 1, 1, 1], [5, 6, 160, 1, 1, 1]] assert mode in ['large', 'small'] # building first layer input_channel = _make_divisible(16 * width_mult, 8) layers = [conv_3x3_bn(3, input_channel, 2)] # building inverted residual blocks block = InvertedResidual for k, t, c, use_se, use_hs, s in self.cfgs: output_channel = _make_divisible(c * width_mult, 8) exp_size = _make_divisible(input_channel * t, 8) layers.append(block(input_channel, exp_size, output_channel, k, s, use_se, use_hs)) input_channel = output_channel # building last several layers layers.append(conv_1x1_bn(input_channel, exp_size)) self.features = nn.Sequential(*layers) self.extras = nn.ModuleList([ InvertedResidual(960, _make_divisible(960 * 0.2, 8), 512, 3, 2, True, True), InvertedResidual(512, _make_divisible(512 * 0.25, 8), 256, 3, 2, True, True), InvertedResidual(256, _make_divisible(256 * 0.5, 8), 256, 3, 2, True, True), InvertedResidual(256, _make_divisible(256 * 0.25, 8), 64, 3, 2, True, True), ]) self.reset_parameters() def forward(self, x): features = [] for i in range(13): x = self.features[i](x) features.append(x) for i in range(13, len(self.features)): x = self.features[i](x) features.append(x) for i in range(len(self.extras)): x = self.extras[i](x) features.append(x) return tuple(features) def reset_parameters(self): for m in self.modules(): if isinstance(m, nn.Conv2d): n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels m.weight.data.normal_(0, math.sqrt(2. / n)) if m.bias is not None: m.bias.data.zero_() elif isinstance(m, nn.BatchNorm2d): m.weight.data.fill_(1) m.bias.data.zero_() elif isinstance(m, nn.Linear): n = m.weight.size(1) m.weight.data.normal_(0, 0.01) m.bias.data.zero_() @registry.BACKBONES.register('mobilenet_v3') def mobilenet_v3(cfg, pretrained=True): model = MobileNetV3() if pretrained: model.load_state_dict(load_state_dict_from_url(model_urls['mobilenet_v3']), strict=False) return model