from torch import nn from ssd.modeling import registry from ssd.utils.model_zoo import load_state_dict_from_url model_urls = { 'mobilenet_v2': 'https://download.pytorch.org/models/mobilenet_v2-b0353104.pth', } class ConvBNReLU(nn.Sequential): def __init__(self, in_planes, out_planes, kernel_size=3, stride=1, groups=1): padding = (kernel_size - 1) // 2 super(ConvBNReLU, self).__init__( nn.Conv2d(in_planes, out_planes, kernel_size, stride, padding, groups=groups, bias=False), nn.BatchNorm2d(out_planes), nn.ReLU6(inplace=True) ) class InvertedResidual(nn.Module): def __init__(self, inp, oup, stride, expand_ratio): super(InvertedResidual, self).__init__() self.stride = stride assert stride in [1, 2] hidden_dim = int(round(inp * expand_ratio)) self.use_res_connect = self.stride == 1 and inp == oup layers = [] if expand_ratio != 1: # pw layers.append(ConvBNReLU(inp, hidden_dim, kernel_size=1)) layers.extend([ # dw ConvBNReLU(hidden_dim, hidden_dim, stride=stride, groups=hidden_dim), # pw-linear nn.Conv2d(hidden_dim, oup, 1, 1, 0, bias=False), nn.BatchNorm2d(oup), ]) self.conv = nn.Sequential(*layers) def forward(self, x): if self.use_res_connect: return x + self.conv(x) else: return self.conv(x) class MobileNetV2(nn.Module): def __init__(self, width_mult=1.0, inverted_residual_setting=None): super(MobileNetV2, self).__init__() block = InvertedResidual input_channel = 32 last_channel = 1280 if inverted_residual_setting is None: inverted_residual_setting = [ # t, c, n, s [1, 16, 1, 1], [6, 24, 2, 2], [6, 32, 3, 2], [6, 64, 4, 2], [6, 96, 3, 1], [6, 160, 3, 2], [6, 320, 1, 1], ] # only check the first element, assuming user knows t,c,n,s are required if len(inverted_residual_setting) == 0 or len(inverted_residual_setting[0]) != 4: raise ValueError("inverted_residual_setting should be non-empty " "or a 4-element list, got {}".format(inverted_residual_setting)) # building first layer input_channel = int(input_channel * width_mult) self.last_channel = int(last_channel * max(1.0, width_mult)) features = [ConvBNReLU(3, input_channel, stride=2)] # building inverted residual blocks for t, c, n, s in inverted_residual_setting: output_channel = int(c * width_mult) for i in range(n): stride = s if i == 0 else 1 features.append(block(input_channel, output_channel, stride, expand_ratio=t)) input_channel = output_channel # building last several layers features.append(ConvBNReLU(input_channel, self.last_channel, kernel_size=1)) # make it nn.Sequential self.features = nn.Sequential(*features) self.extras = nn.ModuleList([ InvertedResidual(1280, 512, 2, 0.2), InvertedResidual(512, 256, 2, 0.25), InvertedResidual(256, 256, 2, 0.5), InvertedResidual(256, 64, 2, 0.25) ]) self.reset_parameters() def reset_parameters(self): # weight initialization for m in self.modules(): if isinstance(m, nn.Conv2d): nn.init.kaiming_normal_(m.weight, mode='fan_out') if m.bias is not None: nn.init.zeros_(m.bias) elif isinstance(m, nn.BatchNorm2d): nn.init.ones_(m.weight) nn.init.zeros_(m.bias) elif isinstance(m, nn.Linear): nn.init.normal_(m.weight, 0, 0.01) nn.init.zeros_(m.bias) def forward(self, x): features = [] for i in range(14): x = self.features[i](x) features.append(x) for i in range(14, len(self.features)): x = self.features[i](x) features.append(x) for i in range(len(self.extras)): x = self.extras[i](x) features.append(x) return tuple(features) @registry.BACKBONES.register('mobilenet_v2') def mobilenet_v2(cfg, pretrained=True): model = MobileNetV2() if pretrained: model.load_state_dict(load_state_dict_from_url(model_urls['mobilenet_v2']), strict=False) return model