# InstaBoost for MMDetection Configs in this directory is the implementation for ICCV2019 paper "InstaBoost: Boosting Instance Segmentation Via Probability Map Guided Copy-Pasting" and provided by the authors of the paper. InstaBoost is a data augmentation method for object detection and instance segmentation. The paper has been released on [`arXiv`](https://arxiv.org/abs/1908.07801). ``` @inproceedings{fang2019instaboost, title={Instaboost: Boosting instance segmentation via probability map guided copy-pasting}, author={Fang, Hao-Shu and Sun, Jianhua and Wang, Runzhong and Gou, Minghao and Li, Yong-Lu and Lu, Cewu}, booktitle={Proceedings of the IEEE International Conference on Computer Vision}, pages={682--691}, year={2019} } ``` ## Usage ### Requirements You need to install `instaboostfast` before using it. ``` pip install instaboostfast ``` The code and more details can be found [here](https://github.com/GothicAi/Instaboost). ### Integration with MMDetection InstaBoost have been already integrated in the data pipeline, thus all you need is to add or change **InstaBoost** configurations after **LoadImageFromFile**. We have provided examples like [this](mask_rcnn_r50_fpn_instaboost_4x.py#L121). You can refer to [`InstaBoostConfig`](https://github.com/GothicAi/InstaBoost-pypi#instaboostconfig) for more details. ## Results and Models - All models were trained on `coco_2017_train` and tested on `coco_2017_val` for conveinience of evaluation and comparison. In the paper, the results are obtained from `test-dev`. - To balance accuracy and training time when using InstaBoost, models released in this page are all trained for 48 Epochs. Other training and testing configs strictly follow the original framework. - The results and models are provided by the [authors](https://github.com/GothicAi/Instaboost) (many thanks). | InstaBoost | Network | Backbone | Lr schd | box AP | mask AP | Download | | :-------------: | :-------------: | :--------: | :-----: | :----: | :-----: | :-----------------: | | × | Mask R-CNN | R-50-FPN | 1x | 37.3 | 34.2 | - | | √ | Mask R-CNN | R-50-FPN | 4x |**40.0**|**36.2** |[Baidu](https://pan.baidu.com/s/1PLn1K5qreDoM4wh7nbsLqA) / [Google](https://drive.google.com/file/d/1uUT1qc3oYS8xHLyM7bJWgxBNbW-9sa1f/view?usp=sharing)| | × | Mask R-CNN | R-101-FPN | 1x | 39.4 | 35.9 | - | | √ | Mask R-CNN | R-101-FPN | 4x |**42.1**|**37.8** |[Baidu](https://pan.baidu.com/s/1IZpqCDrcrOiwNJ-Y_3wpOQ) / [Google](https://drive.google.com/file/d/1idGMPexovIDUHXSNlpIA1mjKzgnFrcW3/view?usp=sharing)| | × | Mask R-CNN | X-101-64x4d-FPN | 1x | 42.1 | 38.0 | - | | × | Mask R-CNN | X-101-64x4d-FPN | 2x | *42.0* | *37.7* | - | | √ | Mask R-CNN | X-101-64x4d-FPN | 4x |**44.5**|**39.5** |[Baidu](https://pan.baidu.com/s/1KrHQBHcHjWONpXbC2qUzxw) / [Google](https://drive.google.com/file/d/1qD4V9uYbtpaZBmTMTgP7f0uw46zroY9-/view?usp=sharing)| | × | Cascade R-CNN | R-101-FPN | 1x | 42.6 | 37.0 | - | | √ | Cascade R-CNN | R-101-FPN | 4x |**45.4**|**39.2** |[Baidu](https://pan.baidu.com/s/1_4cJ0B9fugcA-oBHYe9o_A) / [Google](https://drive.google.com/file/d/1xhiuFoOMQyDIvOrz6MiAZPboRRe1YK8p/view?usp=sharing)| | × | Cascade R-CNN | X-101-64x4d-FPN | 1x | 45.4 | 39.1 | - | | √ | Cascade R-CNN | X-101-64x4d-FPN | 4x |**47.2**|**40.4** |[Baidu](https://pan.baidu.com/s/1nu73IpRbTEb4caPMHWJMXA) / [Google](https://drive.google.com/file/d/11iaKH-ZeVCi-65wzlT5OxxUOkREMzXRW/view?usp=sharing)| | × | SSD | VGG16-512 | 120e | 29.3 | - | - | | √ | SSD | VGG16-512 | 360e |**30.3**| - |[Baidu](https://pan.baidu.com/s/1G-1atZ81A8mLLx8taJAuwQ) / [Google](https://drive.google.com/file/d/1sqMIEusZw2Y7Ge8DuJgmhSP-2V74BNKy/view?usp=sharing)|