import numpy as np import torch from . import nms_cuda, nms_cpu from .soft_nms_cpu import soft_nms_cpu def nms(dets, iou_thr, device_id=None): """Dispatch to either CPU or GPU NMS implementations. The input can be either a torch tensor or numpy array. GPU NMS will be used if the input is a gpu tensor or device_id is specified, otherwise CPU NMS will be used. The returned type will always be the same as inputs. Arguments: dets (torch.Tensor or np.ndarray): bboxes with scores. iou_thr (float): IoU threshold for NMS. device_id (int, optional): when `dets` is a numpy array, if `device_id` is None, then cpu nms is used, otherwise gpu_nms will be used. Returns: tuple: kept bboxes and indice, which is always the same data type as the input. """ # convert dets (tensor or numpy array) to tensor if isinstance(dets, torch.Tensor): is_numpy = False dets_th = dets elif isinstance(dets, np.ndarray): is_numpy = True device = 'cpu' if device_id is None else 'cuda:{}'.format(device_id) dets_th = torch.from_numpy(dets).to(device) else: raise TypeError( 'dets must be either a Tensor or numpy array, but got {}'.format( type(dets))) # execute cpu or cuda nms if dets_th.shape[0] == 0: inds = dets_th.new_zeros(0, dtype=torch.long) else: if dets_th.is_cuda: inds = nms_cuda.nms(dets_th, iou_thr) else: inds = nms_cpu.nms(dets_th, iou_thr) if is_numpy: inds = inds.cpu().numpy() return dets[inds, :], inds def soft_nms(dets, iou_thr, method='linear', sigma=0.5, min_score=1e-3): if isinstance(dets, torch.Tensor): is_tensor = True dets_np = dets.detach().cpu().numpy() elif isinstance(dets, np.ndarray): is_tensor = False dets_np = dets else: raise TypeError( 'dets must be either a Tensor or numpy array, but got {}'.format( type(dets))) method_codes = {'linear': 1, 'gaussian': 2} if method not in method_codes: raise ValueError('Invalid method for SoftNMS: {}'.format(method)) new_dets, inds = soft_nms_cpu( dets_np, iou_thr, method=method_codes[method], sigma=sigma, min_score=min_score) if is_tensor: return dets.new_tensor(new_dets), dets.new_tensor( inds, dtype=torch.long) else: return new_dets.astype(np.float32), inds.astype(np.int64)