from functools import partial from mmcv.runner import get_dist_info from mmcv.parallel import collate from torch.utils.data import DataLoader from .sampler import GroupSampler, DistributedGroupSampler # https://github.com/pytorch/pytorch/issues/973 import resource rlimit = resource.getrlimit(resource.RLIMIT_NOFILE) resource.setrlimit(resource.RLIMIT_NOFILE, (4096, rlimit[1])) def build_dataloader(dataset, imgs_per_gpu, workers_per_gpu, num_gpus=1, dist=True, **kwargs): if dist: rank, world_size = get_dist_info() sampler = DistributedGroupSampler(dataset, imgs_per_gpu, world_size, rank) batch_size = imgs_per_gpu num_workers = workers_per_gpu else: sampler = GroupSampler(dataset, imgs_per_gpu) batch_size = num_gpus * imgs_per_gpu num_workers = num_gpus * workers_per_gpu if not kwargs.get('shuffle', True): sampler = None data_loader = DataLoader( dataset, batch_size=batch_size, sampler=sampler, num_workers=num_workers, collate_fn=partial(collate, samples_per_gpu=imgs_per_gpu), pin_memory=False, **kwargs) return data_loader