import torch from torch.autograd import Function from .. import deform_pool_cuda class DeformRoIPoolingFunction(Function): @staticmethod def forward(ctx, data, rois, offset, spatial_scale, pooled_size, output_dim, no_trans, group_size=1, part_size=None, sample_per_part=4, trans_std=.0): ctx.spatial_scale = spatial_scale ctx.pooled_size = pooled_size ctx.output_dim = output_dim ctx.no_trans = no_trans ctx.group_size = group_size ctx.part_size = pooled_size if part_size is None else part_size ctx.sample_per_part = sample_per_part ctx.trans_std = trans_std assert 0.0 <= ctx.trans_std <= 1.0 if not data.is_cuda: raise NotImplementedError output = data.new_empty( DeformRoIPoolingFunction._infer_shape(ctx, data, rois)) output_count = data.new_empty( DeformRoIPoolingFunction._infer_shape(ctx, data, rois)) deform_pool_cuda.deform_psroi_pooling_cuda_forward( data, rois, offset, output, output_count, ctx.no_trans, ctx.spatial_scale, ctx.output_dim, ctx.group_size, ctx.pooled_size, ctx.part_size, ctx.sample_per_part, ctx.trans_std) if data.requires_grad or rois.requires_grad or offset.requires_grad: ctx.save_for_backward(data, rois, offset) ctx.output_count = output_count return output @staticmethod def backward(ctx, grad_output): if not grad_output.is_cuda: raise NotImplementedError data, rois, offset = ctx.saved_tensors output_count = ctx.output_count grad_input = torch.zeros_like(data) grad_offset = torch.zeros_like(offset) deform_pool_cuda.deform_psroi_pooling_cuda_backward( grad_output, data, rois, offset, output_count, grad_input, grad_offset, ctx.no_trans, ctx.spatial_scale, ctx.output_dim, ctx.group_size, ctx.pooled_size, ctx.part_size, ctx.sample_per_part, ctx.trans_std) return (grad_input, torch.zeros_like(rois), grad_offset, None, None, None, None, None, None, None, None) @staticmethod def _infer_shape(ctx, data, rois): n = rois.shape[0] return n, ctx.output_dim, ctx.pooled_size, ctx.pooled_size deform_roi_pooling = DeformRoIPoolingFunction.apply