import torch from mmdet.core import bbox2roi, build_assigner, build_sampler from ..registry import DETECTORS from .two_stage import TwoStageDetector @DETECTORS.register_module class DoubleHeadRCNN(TwoStageDetector): def __init__(self, reg_roi_scale_factor, **kwargs): super().__init__(**kwargs) self.reg_roi_scale_factor = reg_roi_scale_factor def forward_dummy(self, img): outs = () # backbone x = self.extract_feat(img) # rpn if self.with_rpn: rpn_outs = self.rpn_head(x) outs = outs + (rpn_outs, ) proposals = torch.randn(1000, 4).cuda() # bbox head rois = bbox2roi([proposals]) bbox_cls_feats = self.bbox_roi_extractor( x[:self.bbox_roi_extractor.num_inputs], rois) bbox_reg_feats = self.bbox_roi_extractor( x[:self.bbox_roi_extractor.num_inputs], rois, roi_scale_factor=self.reg_roi_scale_factor) if self.with_shared_head: bbox_cls_feats = self.shared_head(bbox_cls_feats) bbox_reg_feats = self.shared_head(bbox_reg_feats) cls_score, bbox_pred = self.bbox_head(bbox_cls_feats, bbox_reg_feats) outs += (cls_score, bbox_pred) return outs def forward_train(self, img, img_meta, gt_bboxes, gt_labels, gt_bboxes_ignore=None, gt_masks=None, proposals=None): x = self.extract_feat(img) losses = dict() # RPN forward and loss if self.with_rpn: rpn_outs = self.rpn_head(x) rpn_loss_inputs = rpn_outs + (gt_bboxes, img_meta, self.train_cfg.rpn) rpn_losses = self.rpn_head.loss( *rpn_loss_inputs, gt_bboxes_ignore=gt_bboxes_ignore) losses.update(rpn_losses) proposal_cfg = self.train_cfg.get('rpn_proposal', self.test_cfg.rpn) proposal_inputs = rpn_outs + (img_meta, proposal_cfg) proposal_list = self.rpn_head.get_bboxes(*proposal_inputs) else: proposal_list = proposals # assign gts and sample proposals if self.with_bbox or self.with_mask: bbox_assigner = build_assigner(self.train_cfg.rcnn.assigner) bbox_sampler = build_sampler( self.train_cfg.rcnn.sampler, context=self) num_imgs = img.size(0) if gt_bboxes_ignore is None: gt_bboxes_ignore = [None for _ in range(num_imgs)] sampling_results = [] for i in range(num_imgs): assign_result = bbox_assigner.assign(proposal_list[i], gt_bboxes[i], gt_bboxes_ignore[i], gt_labels[i]) sampling_result = bbox_sampler.sample( assign_result, proposal_list[i], gt_bboxes[i], gt_labels[i], feats=[lvl_feat[i][None] for lvl_feat in x]) sampling_results.append(sampling_result) # bbox head forward and loss if self.with_bbox: rois = bbox2roi([res.bboxes for res in sampling_results]) # TODO: a more flexible way to decide which feature maps to use bbox_cls_feats = self.bbox_roi_extractor( x[:self.bbox_roi_extractor.num_inputs], rois) bbox_reg_feats = self.bbox_roi_extractor( x[:self.bbox_roi_extractor.num_inputs], rois, roi_scale_factor=self.reg_roi_scale_factor) if self.with_shared_head: bbox_cls_feats = self.shared_head(bbox_cls_feats) bbox_reg_feats = self.shared_head(bbox_reg_feats) cls_score, bbox_pred = self.bbox_head(bbox_cls_feats, bbox_reg_feats) bbox_targets = self.bbox_head.get_target(sampling_results, gt_bboxes, gt_labels, self.train_cfg.rcnn) loss_bbox = self.bbox_head.loss(cls_score, bbox_pred, *bbox_targets) losses.update(loss_bbox) # mask head forward and loss if self.with_mask: if not self.share_roi_extractor: pos_rois = bbox2roi( [res.pos_bboxes for res in sampling_results]) mask_feats = self.mask_roi_extractor( x[:self.mask_roi_extractor.num_inputs], pos_rois) if self.with_shared_head: mask_feats = self.shared_head(mask_feats) else: pos_inds = [] device = bbox_cls_feats.device for res in sampling_results: pos_inds.append( torch.ones( res.pos_bboxes.shape[0], device=device, dtype=torch.uint8)) pos_inds.append( torch.zeros( res.neg_bboxes.shape[0], device=device, dtype=torch.uint8)) pos_inds = torch.cat(pos_inds) mask_feats = bbox_cls_feats[pos_inds] mask_pred = self.mask_head(mask_feats) mask_targets = self.mask_head.get_target(sampling_results, gt_masks, self.train_cfg.rcnn) pos_labels = torch.cat( [res.pos_gt_labels for res in sampling_results]) loss_mask = self.mask_head.loss(mask_pred, mask_targets, pos_labels) losses.update(loss_mask) return losses def simple_test_bboxes(self, x, img_meta, proposals, rcnn_test_cfg, rescale=False): """Test only det bboxes without augmentation.""" rois = bbox2roi(proposals) bbox_cls_feats = self.bbox_roi_extractor( x[:self.bbox_roi_extractor.num_inputs], rois) bbox_reg_feats = self.bbox_roi_extractor( x[:self.bbox_roi_extractor.num_inputs], rois, roi_scale_factor=self.reg_roi_scale_factor) if self.with_shared_head: bbox_cls_feats = self.shared_head(bbox_cls_feats) bbox_reg_feats = self.shared_head(bbox_reg_feats) cls_score, bbox_pred = self.bbox_head(bbox_cls_feats, bbox_reg_feats) img_shape = img_meta[0]['img_shape'] scale_factor = img_meta[0]['scale_factor'] det_bboxes, det_labels = self.bbox_head.get_det_bboxes( rois, cls_score, bbox_pred, img_shape, scale_factor, rescale=rescale, cfg=rcnn_test_cfg) return det_bboxes, det_labels