import mmcv from mmdet.core import tensor2imgs, bbox_mapping from .base import BaseDetector from .test_mixins import RPNTestMixin from .. import builder class RPN(BaseDetector, RPNTestMixin): def __init__(self, backbone, neck, rpn_head, train_cfg, test_cfg, pretrained=None): super(RPN, self).__init__() self.backbone = builder.build_backbone(backbone) self.neck = builder.build_neck(neck) if neck is not None else None self.rpn_head = builder.build_anchor_head(rpn_head) self.train_cfg = train_cfg self.test_cfg = test_cfg self.init_weights(pretrained=pretrained) def init_weights(self, pretrained=None): super(RPN, self).init_weights(pretrained) self.backbone.init_weights(pretrained=pretrained) if self.with_neck: self.neck.init_weights() self.rpn_head.init_weights() def extract_feat(self, img): x = self.backbone(img) if self.with_neck: x = self.neck(x) return x def forward_train(self, img, img_meta, gt_bboxes=None): if self.train_cfg.rpn.get('debug', False): self.rpn_head.debug_imgs = tensor2imgs(img) x = self.extract_feat(img) rpn_outs = self.rpn_head(x) rpn_loss_inputs = rpn_outs + (gt_bboxes, img_meta, self.train_cfg.rpn) losses = self.rpn_head.loss(*rpn_loss_inputs) return losses def simple_test(self, img, img_meta, rescale=False): x = self.extract_feat(img) proposal_list = self.simple_test_rpn(x, img_meta, self.test_cfg.rpn) if rescale: for proposals, meta in zip(proposal_list, img_meta): proposals[:, :4] /= meta['scale_factor'] # TODO: remove this restriction return proposal_list[0].cpu().numpy() def aug_test(self, imgs, img_metas, rescale=False): proposal_list = self.aug_test_rpn( self.extract_feats(imgs), img_metas, self.test_cfg.rpn) if not rescale: for proposals, img_meta in zip(proposal_list, img_metas[0]): img_shape = img_meta['img_shape'] scale_factor = img_meta['scale_factor'] flip = img_meta['flip'] proposals[:, :4] = bbox_mapping(proposals[:, :4], img_shape, scale_factor, flip) # TODO: remove this restriction return proposal_list[0].cpu().numpy() def show_result(self, data, result, img_norm_cfg): """Show RPN proposals on the image. Although we assume batch size is 1, this method supports arbitrary batch size. """ img_tensor = data['img'][0] img_metas = data['img_meta'][0].data[0] imgs = tensor2imgs(img_tensor, **img_norm_cfg) assert len(imgs) == len(img_metas) for img, img_meta in zip(imgs, img_metas): h, w, _ = img_meta['img_shape'] img_show = img[:h, :w, :] mmcv.imshow_bboxes(img_show, result, top_k=20)