import os.path as osp import mmcv import numpy as np from mmcv.parallel import DataContainer as DC from pycocotools.coco import COCO from torch.utils.data import Dataset from .transforms import (ImageTransform, BboxTransform, MaskTransform, Numpy2Tensor) from .utils import to_tensor, show_ann, random_scale class CocoDataset(Dataset): def __init__(self, ann_file, img_prefix, img_scale, img_norm_cfg, size_divisor=None, proposal_file=None, num_max_proposals=1000, flip_ratio=0, with_mask=True, with_crowd=True, with_label=True, test_mode=False, debug=False): # path of the data file self.coco = COCO(ann_file) # filter images with no annotation during training if not test_mode: self.img_ids, self.img_infos = self._filter_imgs() else: self.img_ids = self.coco.getImgIds() self.img_infos = [ self.coco.loadImgs(idx)[0] for idx in self.img_ids ] assert len(self.img_ids) == len(self.img_infos) # get the mapping from original category ids to labels self.cat_ids = self.coco.getCatIds() self.cat2label = { cat_id: i + 1 for i, cat_id in enumerate(self.cat_ids) } # prefix of images path self.img_prefix = img_prefix # (long_edge, short_edge) or [(long1, short1), (long2, short2), ...] self.img_scales = img_scale if isinstance(img_scale, list) else [img_scale] assert mmcv.is_list_of(self.img_scales, tuple) # color channel order and normalize configs self.img_norm_cfg = img_norm_cfg # proposals # TODO: revise _filter_imgs to be more flexible if proposal_file is not None: self.proposals = mmcv.load(proposal_file) ori_ids = self.coco.getImgIds() sorted_idx = [ori_ids.index(id) for id in self.img_ids] self.proposals = [self.proposals[idx] for idx in sorted_idx] else: self.proposals = None self.num_max_proposals = num_max_proposals # flip ratio self.flip_ratio = flip_ratio assert flip_ratio >= 0 and flip_ratio <= 1 # padding border to ensure the image size can be divided by # size_divisor (used for FPN) self.size_divisor = size_divisor # with crowd or not, False when using RetinaNet self.with_crowd = with_crowd # with mask or not self.with_mask = with_mask # with label is False for RPN self.with_label = with_label # in test mode or not self.test_mode = test_mode # debug mode or not self.debug = debug # set group flag for the sampler self._set_group_flag() # transforms self.img_transform = ImageTransform( size_divisor=self.size_divisor, **self.img_norm_cfg) self.bbox_transform = BboxTransform() self.mask_transform = MaskTransform() self.numpy2tensor = Numpy2Tensor() def __len__(self): return len(self.img_ids) def _filter_imgs(self, min_size=32): """Filter images too small or without ground truths.""" img_ids = list(set([_['image_id'] for _ in self.coco.anns.values()])) valid_ids = [] img_infos = [] for i in img_ids: info = self.coco.loadImgs(i)[0] if min(info['width'], info['height']) >= min_size: valid_ids.append(i) img_infos.append(info) return valid_ids, img_infos def _load_ann_info(self, idx): img_id = self.img_ids[idx] ann_ids = self.coco.getAnnIds(imgIds=img_id) ann_info = self.coco.loadAnns(ann_ids) return ann_info def _parse_ann_info(self, ann_info, with_mask=True): """Parse bbox and mask annotation. Args: ann_info (list[dict]): Annotation info of an image. with_mask (bool): Whether to parse mask annotations. Returns: dict: A dict containing the following keys: bboxes, bboxes_ignore, labels, masks, mask_polys, poly_lens. """ gt_bboxes = [] gt_labels = [] gt_bboxes_ignore = [] # Two formats are provided. # 1. mask: a binary map of the same size of the image. # 2. polys: each mask consists of one or several polys, each poly is a # list of float. if with_mask: gt_masks = [] gt_mask_polys = [] gt_poly_lens = [] for i, ann in enumerate(ann_info): if ann.get('ignore', False): continue x1, y1, w, h = ann['bbox'] if ann['area'] <= 0 or w < 1 or h < 1: continue bbox = [x1, y1, x1 + w - 1, y1 + h - 1] if ann['iscrowd']: gt_bboxes_ignore.append(bbox) else: gt_bboxes.append(bbox) gt_labels.append(self.cat2label[ann['category_id']]) if with_mask: gt_masks.append(self.coco.annToMask(ann)) mask_polys = [ p for p in ann['segmentation'] if len(p) >= 6 ] # valid polygons have >= 3 points (6 coordinates) poly_lens = [len(p) for p in mask_polys] gt_mask_polys.append(mask_polys) gt_poly_lens.extend(poly_lens) if gt_bboxes: gt_bboxes = np.array(gt_bboxes, dtype=np.float32) gt_labels = np.array(gt_labels, dtype=np.int64) else: gt_bboxes = np.zeros((0, 4), dtype=np.float32) gt_labels = np.array([], dtype=np.int64) if gt_bboxes_ignore: gt_bboxes_ignore = np.array(gt_bboxes_ignore, dtype=np.float32) else: gt_bboxes_ignore = np.zeros((0, 4), dtype=np.float32) ann = dict( bboxes=gt_bboxes, labels=gt_labels, bboxes_ignore=gt_bboxes_ignore) if with_mask: ann['masks'] = gt_masks # poly format is not used in the current implementation ann['mask_polys'] = gt_mask_polys ann['poly_lens'] = gt_poly_lens return ann def _set_group_flag(self): """Set flag according to image aspect ratio. Images with aspect ratio greater than 1 will be set as group 1, otherwise group 0. """ self.flag = np.zeros(len(self.img_ids), dtype=np.uint8) for i in range(len(self.img_ids)): img_info = self.img_infos[i] if img_info['width'] / img_info['height'] > 1: self.flag[i] = 1 def _rand_another(self, idx): pool = np.where(self.flag == self.flag[idx])[0] return np.random.choice(pool) def __getitem__(self, idx): if self.test_mode: return self.prepare_test_img(idx) while True: img_info = self.img_infos[idx] ann_info = self._load_ann_info(idx) # load image img = mmcv.imread(osp.join(self.img_prefix, img_info['file_name'])) if self.debug: show_ann(self.coco, img, ann_info) # load proposals if necessary if self.proposals is not None: proposals = self.proposals[idx][:self.num_max_proposals] # TODO: Handle empty proposals properly. Currently images with # no proposals are just ignored, but they can be used for # training in concept. if len(proposals) == 0: idx = self._rand_another(idx) continue if not (proposals.shape[1] == 4 or proposals.shape[1] == 5): raise AssertionError( 'proposals should have shapes (n, 4) or (n, 5), ' 'but found {}'.format(proposals.shape)) if proposals.shape[1] == 5: scores = proposals[:, 4] proposals = proposals[:, :4] else: scores = None ann = self._parse_ann_info(ann_info, self.with_mask) gt_bboxes = ann['bboxes'] gt_labels = ann['labels'] gt_bboxes_ignore = ann['bboxes_ignore'] # skip the image if there is no valid gt bbox if len(gt_bboxes) == 0: idx = self._rand_another(idx) continue # apply transforms flip = True if np.random.rand() < self.flip_ratio else False img_scale = random_scale(self.img_scales) # sample a scale img, img_shape, pad_shape, scale_factor = self.img_transform( img, img_scale, flip) if self.proposals is not None: proposals = self.bbox_transform(proposals, img_shape, scale_factor, flip) proposals = np.hstack([proposals, scores[:, None] ]) if scores is not None else proposals gt_bboxes = self.bbox_transform(gt_bboxes, img_shape, scale_factor, flip) gt_bboxes_ignore = self.bbox_transform(gt_bboxes_ignore, img_shape, scale_factor, flip) if self.with_mask: gt_masks = self.mask_transform(ann['masks'], pad_shape, scale_factor, flip) ori_shape = (img_info['height'], img_info['width'], 3) img_meta = dict( ori_shape=ori_shape, img_shape=img_shape, pad_shape=pad_shape, scale_factor=scale_factor, flip=flip) data = dict( img=DC(to_tensor(img), stack=True), img_meta=DC(img_meta, cpu_only=True), gt_bboxes=DC(to_tensor(gt_bboxes))) if self.proposals is not None: data['proposals'] = DC(to_tensor(proposals)) if self.with_label: data['gt_labels'] = DC(to_tensor(gt_labels)) if self.with_crowd: data['gt_bboxes_ignore'] = DC(to_tensor(gt_bboxes_ignore)) if self.with_mask: data['gt_masks'] = DC(gt_masks, cpu_only=True) return data def prepare_test_img(self, idx): """Prepare an image for testing (multi-scale and flipping)""" img_info = self.img_infos[idx] img = mmcv.imread(osp.join(self.img_prefix, img_info['file_name'])) if self.proposals is not None: proposal = self.proposals[idx][:self.num_max_proposals] if not (proposal.shape[1] == 4 or proposal.shape[1] == 5): raise AssertionError( 'proposals should have shapes (n, 4) or (n, 5), ' 'but found {}'.format(proposal.shape)) else: proposal = None def prepare_single(img, scale, flip, proposal=None): _img, img_shape, pad_shape, scale_factor = self.img_transform( img, scale, flip) _img = to_tensor(_img) _img_meta = dict( ori_shape=(img_info['height'], img_info['width'], 3), img_shape=img_shape, pad_shape=pad_shape, scale_factor=scale_factor, flip=flip) if proposal is not None: if proposal.shape[1] == 5: score = proposal[:, 4] proposal = proposal[:, :4] else: score = None _proposal = self.bbox_transform(proposal, img_shape, scale_factor, flip) _proposal = np.hstack([_proposal, score[:, None] ]) if score is not None else _proposal _proposal = to_tensor(_proposal) else: _proposal = None return _img, _img_meta, _proposal imgs = [] img_metas = [] proposals = [] for scale in self.img_scales: _img, _img_meta, _proposal = prepare_single( img, scale, False, proposal) imgs.append(_img) img_metas.append(DC(_img_meta, cpu_only=True)) proposals.append(_proposal) if self.flip_ratio > 0: _img, _img_meta, _proposal = prepare_single( img, scale, True, proposal) imgs.append(_img) img_metas.append(DC(_img_meta, cpu_only=True)) proposals.append(_proposal) data = dict(img=imgs, img_meta=img_metas) if self.proposals is not None: data['proposals'] = proposals return data