import mmcv import numpy as np import pycocotools.mask as maskUtils import torch from mmdet.core import get_classes from mmdet.datasets import to_tensor from mmdet.datasets.transforms import ImageTransform def _prepare_data(img, img_transform, cfg, device): ori_shape = img.shape img, img_shape, pad_shape, scale_factor = img_transform( img, scale=cfg.data.test.img_scale, keep_ratio=cfg.data.test.get('resize_keep_ratio', True)) img = to_tensor(img).to(device).unsqueeze(0) img_meta = [ dict( ori_shape=ori_shape, img_shape=img_shape, pad_shape=pad_shape, scale_factor=scale_factor, flip=False) ] return dict(img=[img], img_meta=[img_meta]) def _inference_single(model, img, img_transform, cfg, device): img = mmcv.imread(img) data = _prepare_data(img, img_transform, cfg, device) with torch.no_grad(): result = model(return_loss=False, rescale=True, **data) return result def _inference_generator(model, imgs, img_transform, cfg, device): for img in imgs: yield _inference_single(model, img, img_transform, cfg, device) def inference_detector(model, imgs, cfg, device='cuda:0'): img_transform = ImageTransform( size_divisor=cfg.data.test.size_divisor, **cfg.img_norm_cfg) model = model.to(device) model.eval() if not isinstance(imgs, list): return _inference_single(model, imgs, img_transform, cfg, device) else: return _inference_generator(model, imgs, img_transform, cfg, device) def show_result(img, result, dataset='coco', score_thr=0.3, out_file=None): img = mmcv.imread(img) class_names = get_classes(dataset) if isinstance(result, tuple): bbox_result, segm_result = result else: bbox_result, segm_result = result, None bboxes = np.vstack(bbox_result) # draw segmentation masks if segm_result is not None: segms = mmcv.concat_list(segm_result) inds = np.where(bboxes[:, -1] > score_thr)[0] for i in inds: color_mask = np.random.randint( 0, 256, (1, 3), dtype=np.uint8) mask = maskUtils.decode(segms[i]).astype(np.bool) img[mask] = img[mask] * 0.5 + color_mask * 0.5 # draw bounding boxes labels = [ np.full(bbox.shape[0], i, dtype=np.int32) for i, bbox in enumerate(bbox_result) ] labels = np.concatenate(labels) mmcv.imshow_det_bboxes( img.copy(), bboxes, labels, class_names=class_names, score_thr=score_thr, show=out_file is None, out_file=out_file)