from __future__ import division import torch import torch.nn as nn from mmdet import ops from mmdet.core import force_fp32 from ..registry import ROI_EXTRACTORS @ROI_EXTRACTORS.register_module class SingleRoIExtractor(nn.Module): """Extract RoI features from a single level feature map. If there are mulitple input feature levels, each RoI is mapped to a level according to its scale. Args: roi_layer (dict): Specify RoI layer type and arguments. out_channels (int): Output channels of RoI layers. featmap_strides (int): Strides of input feature maps. finest_scale (int): Scale threshold of mapping to level 0. """ def __init__(self, roi_layer, out_channels, featmap_strides, finest_scale=56): super(SingleRoIExtractor, self).__init__() self.roi_layers = self.build_roi_layers(roi_layer, featmap_strides) self.out_channels = out_channels self.featmap_strides = featmap_strides self.finest_scale = finest_scale self.fp16_enabled = False @property def num_inputs(self): """int: Input feature map levels.""" return len(self.featmap_strides) def init_weights(self): pass def build_roi_layers(self, layer_cfg, featmap_strides): cfg = layer_cfg.copy() layer_type = cfg.pop('type') assert hasattr(ops, layer_type) layer_cls = getattr(ops, layer_type) roi_layers = nn.ModuleList( [layer_cls(spatial_scale=1 / s, **cfg) for s in featmap_strides]) return roi_layers def map_roi_levels(self, rois, num_levels): """Map rois to corresponding feature levels by scales. - scale < finest_scale * 2: level 0 - finest_scale * 2 <= scale < finest_scale * 4: level 1 - finest_scale * 4 <= scale < finest_scale * 8: level 2 - scale >= finest_scale * 8: level 3 Args: rois (Tensor): Input RoIs, shape (k, 5). num_levels (int): Total level number. Returns: Tensor: Level index (0-based) of each RoI, shape (k, ) """ scale = torch.sqrt( (rois[:, 3] - rois[:, 1] + 1) * (rois[:, 4] - rois[:, 2] + 1)) target_lvls = torch.floor(torch.log2(scale / self.finest_scale + 1e-6)) target_lvls = target_lvls.clamp(min=0, max=num_levels - 1).long() return target_lvls def roi_rescale(self, rois, scale_factor): cx = (rois[:, 1] + rois[:, 3]) * 0.5 cy = (rois[:, 2] + rois[:, 4]) * 0.5 w = rois[:, 3] - rois[:, 1] + 1 h = rois[:, 4] - rois[:, 2] + 1 new_w = w * scale_factor new_h = h * scale_factor x1 = cx - new_w * 0.5 + 0.5 x2 = cx + new_w * 0.5 - 0.5 y1 = cy - new_h * 0.5 + 0.5 y2 = cy + new_h * 0.5 - 0.5 new_rois = torch.stack((rois[:, 0], x1, y1, x2, y2), dim=-1) return new_rois @force_fp32(apply_to=('feats', ), out_fp16=True) def forward(self, feats, rois, roi_scale_factor=None): if len(feats) == 1: return self.roi_layers[0](feats[0], rois) out_size = self.roi_layers[0].out_size num_levels = len(feats) target_lvls = self.map_roi_levels(rois, num_levels) roi_feats = feats[0].new_zeros( rois.size(0), self.out_channels, *out_size) if roi_scale_factor is not None: rois = self.roi_rescale(rois, roi_scale_factor) for i in range(num_levels): inds = target_lvls == i if inds.any(): rois_ = rois[inds, :] roi_feats_t = self.roi_layers[i](feats[i], rois_) roi_feats[inds] += roi_feats_t return roi_feats