import torch.nn as nn from torch.autograd import Function from torch.autograd.function import once_differentiable from torch.nn.modules.utils import _pair from . import roi_align_cuda class RoIAlignFunction(Function): @staticmethod def forward(ctx, features, rois, out_size, spatial_scale, sample_num=0): out_h, out_w = _pair(out_size) assert isinstance(out_h, int) and isinstance(out_w, int) ctx.spatial_scale = spatial_scale ctx.sample_num = sample_num ctx.save_for_backward(rois) ctx.feature_size = features.size() batch_size, num_channels, data_height, data_width = features.size() num_rois = rois.size(0) output = features.new_zeros(num_rois, num_channels, out_h, out_w) if features.is_cuda: roi_align_cuda.forward(features, rois, out_h, out_w, spatial_scale, sample_num, output) else: raise NotImplementedError return output @staticmethod @once_differentiable def backward(ctx, grad_output): feature_size = ctx.feature_size spatial_scale = ctx.spatial_scale sample_num = ctx.sample_num rois = ctx.saved_tensors[0] assert (feature_size is not None and grad_output.is_cuda) batch_size, num_channels, data_height, data_width = feature_size out_w = grad_output.size(3) out_h = grad_output.size(2) grad_input = grad_rois = None if ctx.needs_input_grad[0]: grad_input = rois.new_zeros(batch_size, num_channels, data_height, data_width) roi_align_cuda.backward(grad_output.contiguous(), rois, out_h, out_w, spatial_scale, sample_num, grad_input) return grad_input, grad_rois, None, None, None roi_align = RoIAlignFunction.apply class RoIAlign(nn.Module): def __init__(self, out_size, spatial_scale, sample_num=0, use_torchvision=False): super(RoIAlign, self).__init__() self.out_size = out_size self.spatial_scale = float(spatial_scale) self.sample_num = int(sample_num) self.use_torchvision = use_torchvision def forward(self, features, rois): if self.use_torchvision: from torchvision.ops import roi_align as tv_roi_align return tv_roi_align(features, rois, _pair(self.out_size), self.spatial_scale, self.sample_num) else: return roi_align(features, rois, self.out_size, self.spatial_scale, self.sample_num) def __repr__(self): format_str = self.__class__.__name__ format_str += '(out_size={}, spatial_scale={}, sample_num={}'.format( self.out_size, self.spatial_scale, self.sample_num) format_str += ', use_torchvision={})'.format(self.use_torchvision) return format_str