# FoveaBox: Beyond Anchor-based Object Detector FoveaBox is an accurate, flexible and completely anchor-free object detection system for object detection framework, as presented in our paper [https://arxiv.org/abs/1904.03797](https://arxiv.org/abs/1904.03797): Different from previous anchor-based methods, FoveaBox directly learns the object existing possibility and the bounding box coordinates without anchor reference. This is achieved by: (a) predicting category-sensitive semantic maps for the object existing possibility, and (b) producing category-agnostic bounding box for each position that potentially contains an object. ## Main Results ### Results on R50/101-FPN | Backbone | Style | align | ms-train| Lr schd | Mem (GB) | Train time (s/iter) | Inf time (fps) | box AP | Download | |:---------:|:-------:|:-------:|:-------:|:-------:|:--------:|:-------------------:|:--------------:|:------:|:--------:| | R-50 | pytorch | N | N | 1x | 5.7 | - | | 36.5 | [model](https://open-mmlab.s3.ap-northeast-2.amazonaws.com/mmdetection/models/foveabox/fovea_r50_fpn_4gpu_1x_20190905-3b185a5d.pth) | | R-50 | pytorch | N | N | 2x | - | - | | 36.9 | [model](https://open-mmlab.s3.ap-northeast-2.amazonaws.com/mmdetection/models/foveabox/fovea_r50_fpn_4gpu_2x_20190905-4a07f6e0.pth) | | R-50 | pytorch | Y | N | 2x | - | - | | 37.9 | [model](https://open-mmlab.s3.ap-northeast-2.amazonaws.com/mmdetection/models/foveabox/fovea_align_gn_r50_fpn_4gpu_2x_20190905-3e6bc82f.pth) | | R-50 | pytorch | Y | Y | 2x | - | - | | 40.1 | [model](https://open-mmlab.s3.ap-northeast-2.amazonaws.com/mmdetection/models/foveabox/fovea_align_gn_ms_r50_fpn_4gpu_2x_20190905-13374f33.pth) | | R-101 | pytorch | N | N | 1x | 9.4 | - | | 38.5 | [model](https://open-mmlab.s3.ap-northeast-2.amazonaws.com/mmdetection/models/foveabox/fovea_r101_fpn_4gpu_1x_20190905-80ff93a6.pth) | | R-101 | pytorch | N | N | 2x | - | - | | 38.5 | [model](https://open-mmlab.s3.ap-northeast-2.amazonaws.com/mmdetection/models/foveabox/fovea_r101_fpn_4gpu_2x_20190905-d9c99fb1.pth) | | R-101 | pytorch | Y | N | 2x | - | - | | 39.4 | [model](https://open-mmlab.s3.ap-northeast-2.amazonaws.com/mmdetection/models/foveabox/fovea_align_gn_r101_fpn_4gpu_2x_20190905-407ddad6.pth) | | R-101 | pytorch | Y | Y | 2x | - | - | | 41.9 | [model](https://open-mmlab.s3.ap-northeast-2.amazonaws.com/mmdetection/models/foveabox/fovea_align_gn_ms_r101_fpn_4gpu_2x_20190905-936c7277.pth) | [1] *1x and 2x mean the model is trained for 12 and 24 epochs, respectively.* \ [2] *Align means utilizing deformable convolution to align the cls branch.* \ [3] *All results are obtained with a single model and without any test time data augmentation.*\ [4] *We use 4 NVIDIA Tesla V100 GPUs for training.* Any pull requests or issues are welcome. ## Citations Please consider citing our paper in your publications if the project helps your research. BibTeX reference is as follows. ``` @article{kong2019foveabox, title={FoveaBox: Beyond Anchor-based Object Detector}, author={Kong, Tao and Sun, Fuchun and Liu, Huaping and Jiang, Yuning and Shi, Jianbo}, journal={arXiv preprint arXiv:1904.03797}, year={2019} } ```