import math import torch import torch.nn as nn from torch.autograd import Function from torch.autograd.function import once_differentiable from torch.nn.modules.utils import _pair from . import masked_conv2d_cuda class MaskedConv2dFunction(Function): @staticmethod def forward(ctx, features, mask, weight, bias, padding=0, stride=1): assert mask.dim() == 3 and mask.size(0) == 1 assert features.dim() == 4 and features.size(0) == 1 assert features.size()[2:] == mask.size()[1:] pad_h, pad_w = _pair(padding) stride_h, stride_w = _pair(stride) if stride_h != 1 or stride_w != 1: raise ValueError( 'Stride could not only be 1 in masked_conv2d currently.') if not features.is_cuda: raise NotImplementedError out_channel, in_channel, kernel_h, kernel_w = weight.size() batch_size = features.size(0) out_h = int( math.floor((features.size(2) + 2 * pad_h - (kernel_h - 1) - 1) / stride_h + 1)) out_w = int( math.floor((features.size(3) + 2 * pad_w - (kernel_h - 1) - 1) / stride_w + 1)) mask_inds = torch.nonzero(mask[0] > 0) output = features.new_zeros(batch_size, out_channel, out_h, out_w) if mask_inds.numel() > 0: mask_h_idx = mask_inds[:, 0].contiguous() mask_w_idx = mask_inds[:, 1].contiguous() data_col = features.new_zeros(in_channel * kernel_h * kernel_w, mask_inds.size(0)) masked_conv2d_cuda.masked_im2col_forward(features, mask_h_idx, mask_w_idx, kernel_h, kernel_w, pad_h, pad_w, data_col) masked_output = torch.addmm(1, bias[:, None], 1, weight.view(out_channel, -1), data_col) masked_conv2d_cuda.masked_col2im_forward(masked_output, mask_h_idx, mask_w_idx, out_h, out_w, out_channel, output) return output @staticmethod @once_differentiable def backward(ctx, grad_output): return (None, ) * 5 masked_conv2d = MaskedConv2dFunction.apply class MaskedConv2d(nn.Conv2d): """A MaskedConv2d which inherits the official Conv2d. The masked forward doesn't implement the backward function and only supports the stride parameter to be 1 currently. """ def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True): super(MaskedConv2d, self).__init__(in_channels, out_channels, kernel_size, stride, padding, dilation, groups, bias) def forward(self, input, mask=None): if mask is None: # fallback to the normal Conv2d return super(MaskedConv2d, self).forward(input) else: return masked_conv2d(input, mask, self.weight, self.bias, self.padding)