# FCOS: Fully Convolutional One-Stage Object Detection ## Introduction ``` @article{tian2019fcos, title={FCOS: Fully Convolutional One-Stage Object Detection}, author={Tian, Zhi and Shen, Chunhua and Chen, Hao and He, Tong}, journal={arXiv preprint arXiv:1904.01355}, year={2019} } ``` ## Results and Models | Backbone | Style | Multi-scale training | Lr schd | Mem (GB) | Train time (s/iter) | Inf time (fps) | box AP | Download | |:---------:|:-------:|:-------:|:-------:|:--------:|:-------------------:|:--------------:|:------:|:--------:| | R-50-FPN | caffe | N | 1x | 6.9 | 0.396 | 13.6 | 36.7 | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/fcos/fcos_r50_caffe_fpn_gn_1x_4gpu_20190516-9f253a93.pth) | | R-50-FPN | caffe | Y | 2x | - | - | - | 38.7 | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/fcos/fcos_mstrain_640_800_r50_caffe_fpn_gn_2x_4gpu_20190516-f7329d80.pth) | | R-101-FPN | caffe | N | 1x | 10.4 | 0.558 | 11.6 | 39.1 | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/fcos/fcos_r101_caffe_fpn_gn_1x_4gpu_20190516-e4889733.pth) | | R-101-FPN | caffe | Y | 2x | - | - | - | 40.8 | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/fcos/fcos_mstrain_640_800_r101_caffe_fpn_gn_2x_4gpu_20190516-42e6f62d.pth) | | X-101-64x4d-FPN | caffe | Y |2x | 9.7 | 0.892 | 7.0 | 42.8 | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/fcos/fcos_mstrain_640_800_x101_64x4d_fpn_gn_2x_20190516-a36c0872.pth) | **Notes:** - To be consistent with the author's implementation, we use 4 GPUs with 4 images/GPU for R-50 and R-101 models, and 8 GPUs with 2 image/GPU for X-101 models.