import platform from functools import partial from mmcv.parallel import collate from mmcv.runner import get_dist_info from torch.utils.data import DataLoader from .sampler import DistributedGroupSampler, DistributedSampler, GroupSampler if platform.system() != 'Windows': # https://github.com/pytorch/pytorch/issues/973 import resource rlimit = resource.getrlimit(resource.RLIMIT_NOFILE) resource.setrlimit(resource.RLIMIT_NOFILE, (4096, rlimit[1])) def build_dataloader(dataset, imgs_per_gpu, workers_per_gpu, num_gpus=1, dist=True, shuffle=True, **kwargs): """Build PyTorch DataLoader. In distributed training, each GPU/process has a dataloader. In non-distributed training, there is only one dataloader for all GPUs. Args: dataset (Dataset): A PyTorch dataset. imgs_per_gpu (int): Number of images on each GPU, i.e., batch size of each GPU. workers_per_gpu (int): How many subprocesses to use for data loading for each GPU. num_gpus (int): Number of GPUs. Only used in non-distributed training. dist (bool): Distributed training/test or not. Default: True. shuffle (bool): Whether to shuffle the data at every epoch. Default: True. kwargs: any keyword argument to be used to initialize DataLoader Returns: DataLoader: A PyTorch dataloader. """ if dist: rank, world_size = get_dist_info() # DistributedGroupSampler will definitely shuffle the data to satisfy # that images on each GPU are in the same group if shuffle: sampler = DistributedGroupSampler(dataset, imgs_per_gpu, world_size, rank) else: sampler = DistributedSampler( dataset, world_size, rank, shuffle=False) batch_size = imgs_per_gpu num_workers = workers_per_gpu else: sampler = GroupSampler(dataset, imgs_per_gpu) if shuffle else None batch_size = num_gpus * imgs_per_gpu num_workers = num_gpus * workers_per_gpu data_loader = DataLoader( dataset, batch_size=batch_size, sampler=sampler, num_workers=num_workers, collate_fn=partial(collate, samples_per_gpu=imgs_per_gpu), pin_memory=False, **kwargs) return data_loader