import torch from torch.autograd import gradcheck import os.path as osp import sys sys.path.append(osp.abspath(osp.join(__file__, '../../'))) from roi_pooling import RoIPool feat = torch.randn(4, 16, 15, 15, requires_grad=True).cuda() rois = torch.Tensor([[0, 0, 0, 50, 50], [0, 10, 30, 43, 55], [1, 67, 40, 110, 120]]).cuda() inputs = (feat, rois) print('Gradcheck for roi pooling...') test = gradcheck(RoIPool(4, 1.0 / 8), inputs, eps=1e-5, atol=1e-3) print(test)