from torch.autograd import Function, Variable from .. import roi_align_cuda class RoIAlignFunction(Function): @staticmethod def forward(ctx, features, rois, out_size, spatial_scale, sample_num=0): if isinstance(out_size, int): out_h = out_size out_w = out_size elif isinstance(out_size, tuple): assert len(out_size) == 2 assert isinstance(out_size[0], int) assert isinstance(out_size[1], int) out_h, out_w = out_size else: raise TypeError( '"out_size" must be an integer or tuple of integers') ctx.spatial_scale = spatial_scale ctx.sample_num = sample_num ctx.save_for_backward(rois) ctx.feature_size = features.size() batch_size, num_channels, data_height, data_width = features.size() num_rois = rois.size(0) output = features.new_zeros(num_rois, num_channels, out_h, out_w) if features.is_cuda: roi_align_cuda.forward(features, rois, out_h, out_w, spatial_scale, sample_num, output) else: raise NotImplementedError return output @staticmethod def backward(ctx, grad_output): feature_size = ctx.feature_size spatial_scale = ctx.spatial_scale sample_num = ctx.sample_num rois = ctx.saved_tensors[0] assert (feature_size is not None and grad_output.is_cuda) batch_size, num_channels, data_height, data_width = feature_size out_w = grad_output.size(3) out_h = grad_output.size(2) grad_input = grad_rois = None if ctx.needs_input_grad[0]: grad_input = Variable( rois.new(batch_size, num_channels, data_height, data_width) .zero_()) roi_align_cuda.backward(grad_output, rois, out_h, out_w, spatial_scale, sample_num, grad_input) return grad_input, grad_rois, None, None, None roi_align = RoIAlignFunction.apply