import torch.nn as nn def xavier_init(module, gain=1, bias=0, distribution='normal'): assert distribution in ['uniform', 'normal'] if distribution == 'uniform': nn.init.xavier_uniform_(module.weight, gain=gain) else: nn.init.xavier_normal_(module.weight, gain=gain) if hasattr(module, 'bias'): nn.init.constant_(module.bias, bias) def normal_init(module, mean=0, std=1, bias=0): nn.init.normal_(module.weight, mean, std) if hasattr(module, 'bias'): nn.init.constant_(module.bias, bias) def uniform_init(module, a=0, b=1, bias=0): nn.init.uniform_(module.weight, a, b) if hasattr(module, 'bias'): nn.init.constant_(module.bias, bias) def kaiming_init(module, mode='fan_out', nonlinearity='relu', bias=0, distribution='normal'): assert distribution in ['uniform', 'normal'] if distribution == 'uniform': nn.init.kaiming_uniform_( module.weight, mode=mode, nonlinearity=nonlinearity) else: nn.init.kaiming_normal_( module.weight, mode=mode, nonlinearity=nonlinearity) if hasattr(module, 'bias'): nn.init.constant_(module.bias, bias)