from __future__ import division import argparse from collections import OrderedDict import torch from mmcv import Config from mmcv.torchpack import Runner, obj_from_dict from mmdet import datasets from mmdet.core import (init_dist, DistOptimizerHook, DistSamplerSeedHook, MMDataParallel, MMDistributedDataParallel) from mmdet.datasets.loader import build_dataloader from mmdet.models import build_detector def parse_losses(losses): log_vars = OrderedDict() for loss_name, loss_value in losses.items(): if isinstance(loss_value, torch.Tensor): log_vars[loss_name] = loss_value.mean() elif isinstance(loss_value, list): log_vars[loss_name] = sum(_loss.mean() for _loss in loss_value) else: raise TypeError( '{} is not a tensor or list of tensors'.format(loss_name)) loss = sum(_value for _key, _value in log_vars.items() if 'loss' in _key) log_vars['loss'] = loss for name in log_vars: log_vars[name] = log_vars[name].item() return loss, log_vars def batch_processor(model, data, train_mode): losses = model(**data) loss, log_vars = parse_losses(losses) outputs = dict( loss=loss, log_vars=log_vars, num_samples=len(data['img'].data)) return outputs def parse_args(): parser = argparse.ArgumentParser(description='Train a detector') parser.add_argument('config', help='train config file path') parser.add_argument( '--validate', action='store_true', help='whether to add a validate phase') parser.add_argument( '--gpus', type=int, default=1, help='number of gpus to use') parser.add_argument( '--launcher', choices=['none', 'pytorch', 'slurm', 'mpi'], default='none', help='job launcher') parser.add_argument('--local_rank', type=int, default=0) args = parser.parse_args() return args def main(): args = parse_args() cfg = Config.fromfile(args.config) cfg.update(gpus=args.gpus) # init distributed environment if necessary if args.launcher == 'none': dist = False print('Disabled distributed training.') else: dist = True print('Enabled distributed training.') init_dist(args.launcher, **cfg.dist_params) # prepare data loaders train_dataset = obj_from_dict(cfg.data.train, datasets) data_loaders = [ build_dataloader(train_dataset, cfg.data.imgs_per_gpu, cfg.data.workers_per_gpu, cfg.gpus, dist) ] if args.validate: val_dataset = obj_from_dict(cfg.data.val, datasets) data_loaders.append( build_dataloader(val_dataset, cfg.data.imgs_per_gpu, cfg.data.workers_per_gpu, cfg.gpus, dist)) # build model model = build_detector( cfg.model, train_cfg=cfg.train_cfg, test_cfg=cfg.test_cfg) if dist: model = MMDistributedDataParallel(model.cuda()) else: model = MMDataParallel(model, device_ids=range(cfg.gpus)).cuda() # build runner runner = Runner(model, batch_processor, cfg.optimizer, cfg.work_dir, cfg.log_level) # register hooks optimizer_config = DistOptimizerHook( **cfg.optimizer_config) if dist else cfg.optimizer_config runner.register_training_hooks(cfg.lr_config, optimizer_config, cfg.checkpoint_config, cfg.log_config) if dist: runner.register_hook(DistSamplerSeedHook()) if cfg.resume_from: runner.resume(cfg.resume_from) elif cfg.load_from: runner.load_checkpoint(cfg.load_from) runner.run(data_loaders, cfg.workflow, cfg.total_epochs) if __name__ == '__main__': main()