Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
ModelZoo
SOLOv2-pytorch
Commits
ee26c6b9
Commit
ee26c6b9
authored
Dec 19, 2018
by
pangjm
Browse files
Merge branch 'master' of github.com:open-mmlab/mmdetection
parents
22298f3c
cd35200f
Changes
30
Show whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
527 additions
and
65 deletions
+527
-65
README.md
README.md
+3
-3
configs/faster_rcnn_ohem_r50_fpn_1x.py
configs/faster_rcnn_ohem_r50_fpn_1x.py
+156
-0
configs/pascal_voc/faster_rcnn_r50_fpn_1x_voc0712.py
configs/pascal_voc/faster_rcnn_r50_fpn_1x_voc0712.py
+157
-0
mmdet/apis/train.py
mmdet/apis/train.py
+8
-4
mmdet/core/bbox/assign_sampling.py
mmdet/core/bbox/assign_sampling.py
+4
-4
mmdet/core/bbox/samplers/__init__.py
mmdet/core/bbox/samplers/__init__.py
+2
-1
mmdet/core/bbox/samplers/base_sampler.py
mmdet/core/bbox/samplers/base_sampler.py
+22
-8
mmdet/core/bbox/samplers/combined_sampler.py
mmdet/core/bbox/samplers/combined_sampler.py
+12
-10
mmdet/core/bbox/samplers/instance_balanced_pos_sampler.py
mmdet/core/bbox/samplers/instance_balanced_pos_sampler.py
+1
-1
mmdet/core/bbox/samplers/iou_balanced_neg_sampler.py
mmdet/core/bbox/samplers/iou_balanced_neg_sampler.py
+1
-1
mmdet/core/bbox/samplers/ohem_sampler.py
mmdet/core/bbox/samplers/ohem_sampler.py
+68
-0
mmdet/core/bbox/samplers/pseudo_sampler.py
mmdet/core/bbox/samplers/pseudo_sampler.py
+4
-4
mmdet/core/bbox/samplers/random_sampler.py
mmdet/core/bbox/samplers/random_sampler.py
+6
-8
mmdet/core/evaluation/__init__.py
mmdet/core/evaluation/__init__.py
+2
-2
mmdet/core/evaluation/class_names.py
mmdet/core/evaluation/class_names.py
+8
-8
mmdet/core/evaluation/eval_hooks.py
mmdet/core/evaluation/eval_hooks.py
+39
-0
mmdet/core/loss/losses.py
mmdet/core/loss/losses.py
+6
-2
mmdet/datasets/__init__.py
mmdet/datasets/__init__.py
+5
-3
mmdet/datasets/coco.py
mmdet/datasets/coco.py
+15
-0
mmdet/datasets/concat_dataset.py
mmdet/datasets/concat_dataset.py
+8
-6
No files found.
README.md
View file @
ee26c6b9
...
@@ -194,7 +194,7 @@ Here is an example.
...
@@ -194,7 +194,7 @@ Here is an example.
'bboxes': <np.ndarray> (n, 4),
'bboxes': <np.ndarray> (n, 4),
'labels': <np.ndarray> (n, ),
'labels': <np.ndarray> (n, ),
'bboxes_ignore': <np.ndarray> (k, 4),
'bboxes_ignore': <np.ndarray> (k, 4),
'labels_ignore': <np.ndarray> (k,
4
) (optional field)
'labels_ignore': <np.ndarray> (k, ) (optional field)
}
}
},
},
...
...
...
@@ -206,12 +206,12 @@ There are two ways to work with custom datasets.
...
@@ -206,12 +206,12 @@ There are two ways to work with custom datasets.
-
online conversion
-
online conversion
You can write a new Dataset class inherited from
`CustomDataset`
, and overwrite two methods
You can write a new Dataset class inherited from
`CustomDataset`
, and overwrite two methods
`load_annotations(self, ann_file)`
and
`get_ann_info(self, idx)`
, like
[
CocoDataset
](
mmdet/datasets/coco.py
)
.
`load_annotations(self, ann_file)`
and
`get_ann_info(self, idx)`
, like
[
CocoDataset
](
mmdet/datasets/coco.py
)
and
[
VOCDataset
](
mmdet/datasets/voc.py
)
.
-
offline conversion
-
offline conversion
You can convert the annotation format to the expected format above and save it to
You can convert the annotation format to the expected format above and save it to
a pickle file, like
[
pascal_voc.py
](
tools/convert_datasets/pascal_voc.py
)
.
a pickle
or json
file, like
[
pascal_voc.py
](
tools/convert_datasets/pascal_voc.py
)
.
Then you can simply use
`CustomDataset`
.
Then you can simply use
`CustomDataset`
.
## Technical details
## Technical details
...
...
configs/faster_rcnn_ohem_r50_fpn_1x.py
0 → 100644
View file @
ee26c6b9
# model settings
model
=
dict
(
type
=
'FasterRCNN'
,
pretrained
=
'modelzoo://resnet50'
,
backbone
=
dict
(
type
=
'ResNet'
,
depth
=
50
,
num_stages
=
4
,
out_indices
=
(
0
,
1
,
2
,
3
),
frozen_stages
=
1
,
style
=
'pytorch'
),
neck
=
dict
(
type
=
'FPN'
,
in_channels
=
[
256
,
512
,
1024
,
2048
],
out_channels
=
256
,
num_outs
=
5
),
rpn_head
=
dict
(
type
=
'RPNHead'
,
in_channels
=
256
,
feat_channels
=
256
,
anchor_scales
=
[
8
],
anchor_ratios
=
[
0.5
,
1.0
,
2.0
],
anchor_strides
=
[
4
,
8
,
16
,
32
,
64
],
target_means
=
[.
0
,
.
0
,
.
0
,
.
0
],
target_stds
=
[
1.0
,
1.0
,
1.0
,
1.0
],
use_sigmoid_cls
=
True
),
bbox_roi_extractor
=
dict
(
type
=
'SingleRoIExtractor'
,
roi_layer
=
dict
(
type
=
'RoIAlign'
,
out_size
=
7
,
sample_num
=
2
),
out_channels
=
256
,
featmap_strides
=
[
4
,
8
,
16
,
32
]),
bbox_head
=
dict
(
type
=
'SharedFCBBoxHead'
,
num_fcs
=
2
,
in_channels
=
256
,
fc_out_channels
=
1024
,
roi_feat_size
=
7
,
num_classes
=
81
,
target_means
=
[
0.
,
0.
,
0.
,
0.
],
target_stds
=
[
0.1
,
0.1
,
0.2
,
0.2
],
reg_class_agnostic
=
False
))
# model training and testing settings
train_cfg
=
dict
(
rpn
=
dict
(
assigner
=
dict
(
type
=
'MaxIoUAssigner'
,
pos_iou_thr
=
0.7
,
neg_iou_thr
=
0.3
,
min_pos_iou
=
0.3
,
ignore_iof_thr
=-
1
),
sampler
=
dict
(
type
=
'RandomSampler'
,
num
=
256
,
pos_fraction
=
0.5
,
neg_pos_ub
=-
1
,
add_gt_as_proposals
=
False
),
allowed_border
=
0
,
pos_weight
=-
1
,
smoothl1_beta
=
1
/
9.0
,
debug
=
False
),
rcnn
=
dict
(
assigner
=
dict
(
type
=
'MaxIoUAssigner'
,
pos_iou_thr
=
0.5
,
neg_iou_thr
=
0.5
,
min_pos_iou
=
0.5
,
ignore_iof_thr
=-
1
),
sampler
=
dict
(
type
=
'OHEMSampler'
,
num
=
512
,
pos_fraction
=
0.25
,
neg_pos_ub
=-
1
,
add_gt_as_proposals
=
True
),
pos_weight
=-
1
,
debug
=
False
))
test_cfg
=
dict
(
rpn
=
dict
(
nms_across_levels
=
False
,
nms_pre
=
2000
,
nms_post
=
2000
,
max_num
=
2000
,
nms_thr
=
0.7
,
min_bbox_size
=
0
),
rcnn
=
dict
(
score_thr
=
0.05
,
nms
=
dict
(
type
=
'nms'
,
iou_thr
=
0.5
),
max_per_img
=
100
)
# soft-nms is also supported for rcnn testing
# e.g., nms=dict(type='soft_nms', iou_thr=0.5, min_score=0.05)
)
# dataset settings
dataset_type
=
'CocoDataset'
data_root
=
'data/coco/'
img_norm_cfg
=
dict
(
mean
=
[
123.675
,
116.28
,
103.53
],
std
=
[
58.395
,
57.12
,
57.375
],
to_rgb
=
True
)
data
=
dict
(
imgs_per_gpu
=
2
,
workers_per_gpu
=
2
,
train
=
dict
(
type
=
dataset_type
,
ann_file
=
data_root
+
'annotations/instances_train2017.json'
,
img_prefix
=
data_root
+
'train2017/'
,
img_scale
=
(
1333
,
800
),
img_norm_cfg
=
img_norm_cfg
,
size_divisor
=
32
,
flip_ratio
=
0.5
,
with_mask
=
False
,
with_crowd
=
True
,
with_label
=
True
),
val
=
dict
(
type
=
dataset_type
,
ann_file
=
data_root
+
'annotations/instances_val2017.json'
,
img_prefix
=
data_root
+
'val2017/'
,
img_scale
=
(
1333
,
800
),
img_norm_cfg
=
img_norm_cfg
,
size_divisor
=
32
,
flip_ratio
=
0
,
with_mask
=
False
,
with_crowd
=
True
,
with_label
=
True
),
test
=
dict
(
type
=
dataset_type
,
ann_file
=
data_root
+
'annotations/instances_val2017.json'
,
img_prefix
=
data_root
+
'val2017/'
,
img_scale
=
(
1333
,
800
),
img_norm_cfg
=
img_norm_cfg
,
size_divisor
=
32
,
flip_ratio
=
0
,
with_mask
=
False
,
with_label
=
False
,
test_mode
=
True
))
# optimizer
optimizer
=
dict
(
type
=
'SGD'
,
lr
=
0.02
,
momentum
=
0.9
,
weight_decay
=
0.0001
)
optimizer_config
=
dict
(
grad_clip
=
dict
(
max_norm
=
35
,
norm_type
=
2
))
# learning policy
lr_config
=
dict
(
policy
=
'step'
,
warmup
=
'linear'
,
warmup_iters
=
500
,
warmup_ratio
=
1.0
/
3
,
step
=
[
8
,
11
])
checkpoint_config
=
dict
(
interval
=
1
)
# yapf:disable
log_config
=
dict
(
interval
=
50
,
hooks
=
[
dict
(
type
=
'TextLoggerHook'
),
# dict(type='TensorboardLoggerHook')
])
# yapf:enable
# runtime settings
total_epochs
=
12
dist_params
=
dict
(
backend
=
'nccl'
)
log_level
=
'INFO'
work_dir
=
'./work_dirs/faster_rcnn_r50_fpn_1x'
load_from
=
None
resume_from
=
None
workflow
=
[(
'train'
,
1
)]
configs/pascal_voc/faster_rcnn_r50_fpn_1x_voc0712.py
0 → 100644
View file @
ee26c6b9
# model settings
model
=
dict
(
type
=
'FasterRCNN'
,
pretrained
=
'modelzoo://resnet50'
,
backbone
=
dict
(
type
=
'ResNet'
,
depth
=
50
,
num_stages
=
4
,
out_indices
=
(
0
,
1
,
2
,
3
),
frozen_stages
=
1
,
style
=
'pytorch'
),
neck
=
dict
(
type
=
'FPN'
,
in_channels
=
[
256
,
512
,
1024
,
2048
],
out_channels
=
256
,
num_outs
=
5
),
rpn_head
=
dict
(
type
=
'RPNHead'
,
in_channels
=
256
,
feat_channels
=
256
,
anchor_scales
=
[
8
],
anchor_ratios
=
[
0.5
,
1.0
,
2.0
],
anchor_strides
=
[
4
,
8
,
16
,
32
,
64
],
target_means
=
[.
0
,
.
0
,
.
0
,
.
0
],
target_stds
=
[
1.0
,
1.0
,
1.0
,
1.0
],
use_sigmoid_cls
=
True
),
bbox_roi_extractor
=
dict
(
type
=
'SingleRoIExtractor'
,
roi_layer
=
dict
(
type
=
'RoIAlign'
,
out_size
=
7
,
sample_num
=
2
),
out_channels
=
256
,
featmap_strides
=
[
4
,
8
,
16
,
32
]),
bbox_head
=
dict
(
type
=
'SharedFCBBoxHead'
,
num_fcs
=
2
,
in_channels
=
256
,
fc_out_channels
=
1024
,
roi_feat_size
=
7
,
num_classes
=
21
,
target_means
=
[
0.
,
0.
,
0.
,
0.
],
target_stds
=
[
0.1
,
0.1
,
0.2
,
0.2
],
reg_class_agnostic
=
False
))
# model training and testing settings
train_cfg
=
dict
(
rpn
=
dict
(
assigner
=
dict
(
type
=
'MaxIoUAssigner'
,
pos_iou_thr
=
0.7
,
neg_iou_thr
=
0.3
,
min_pos_iou
=
0.3
,
ignore_iof_thr
=-
1
),
sampler
=
dict
(
type
=
'RandomSampler'
,
num
=
256
,
pos_fraction
=
0.5
,
neg_pos_ub
=-
1
,
add_gt_as_proposals
=
False
),
allowed_border
=
0
,
pos_weight
=-
1
,
smoothl1_beta
=
1
/
9.0
,
debug
=
False
),
rcnn
=
dict
(
assigner
=
dict
(
type
=
'MaxIoUAssigner'
,
pos_iou_thr
=
0.5
,
neg_iou_thr
=
0.5
,
min_pos_iou
=
0.5
,
ignore_iof_thr
=-
1
),
sampler
=
dict
(
type
=
'RandomSampler'
,
num
=
512
,
pos_fraction
=
0.25
,
neg_pos_ub
=-
1
,
add_gt_as_proposals
=
True
),
pos_weight
=-
1
,
debug
=
False
))
test_cfg
=
dict
(
rpn
=
dict
(
nms_across_levels
=
False
,
nms_pre
=
2000
,
nms_post
=
2000
,
max_num
=
2000
,
nms_thr
=
0.7
,
min_bbox_size
=
0
),
rcnn
=
dict
(
score_thr
=
0.05
,
nms
=
dict
(
type
=
'nms'
,
iou_thr
=
0.5
),
max_per_img
=
100
)
# soft-nms is also supported for rcnn testing
# e.g., nms=dict(type='soft_nms', iou_thr=0.5, min_score=0.05)
)
# dataset settings
dataset_type
=
'VOCDataset'
data_root
=
'data/VOCdevkit/'
img_norm_cfg
=
dict
(
mean
=
[
123.675
,
116.28
,
103.53
],
std
=
[
58.395
,
57.12
,
57.375
],
to_rgb
=
True
)
data
=
dict
(
imgs_per_gpu
=
2
,
workers_per_gpu
=
2
,
train
=
dict
(
type
=
'RepeatDataset'
,
# to avoid reloading datasets frequently
times
=
3
,
dataset
=
dict
(
type
=
dataset_type
,
ann_file
=
[
data_root
+
'VOC2007/ImageSets/Main/trainval.txt'
,
data_root
+
'VOC2012/ImageSets/Main/trainval.txt'
],
img_prefix
=
[
data_root
+
'VOC2007/'
,
data_root
+
'VOC2012/'
],
img_scale
=
(
1000
,
600
),
img_norm_cfg
=
img_norm_cfg
,
size_divisor
=
32
,
flip_ratio
=
0.5
,
with_mask
=
False
,
with_crowd
=
True
,
with_label
=
True
)),
val
=
dict
(
type
=
dataset_type
,
ann_file
=
data_root
+
'VOC2007/ImageSets/Main/test.txt'
,
img_prefix
=
data_root
+
'VOC2007/'
,
img_scale
=
(
1000
,
600
),
img_norm_cfg
=
img_norm_cfg
,
size_divisor
=
32
,
flip_ratio
=
0
,
with_mask
=
False
,
with_crowd
=
True
,
with_label
=
True
),
test
=
dict
(
type
=
dataset_type
,
ann_file
=
data_root
+
'VOC2007/ImageSets/Main/test.txt'
,
img_prefix
=
data_root
+
'VOC2007/'
,
img_scale
=
(
1000
,
600
),
img_norm_cfg
=
img_norm_cfg
,
size_divisor
=
32
,
flip_ratio
=
0
,
with_mask
=
False
,
with_label
=
False
,
test_mode
=
True
))
# optimizer
optimizer
=
dict
(
type
=
'SGD'
,
lr
=
0.01
,
momentum
=
0.9
,
weight_decay
=
0.0001
)
optimizer_config
=
dict
(
grad_clip
=
dict
(
max_norm
=
35
,
norm_type
=
2
))
# learning policy
lr_config
=
dict
(
policy
=
'step'
,
step
=
[
3
])
# actual epoch = 3 * 3 = 9
checkpoint_config
=
dict
(
interval
=
1
)
# yapf:disable
log_config
=
dict
(
interval
=
50
,
hooks
=
[
dict
(
type
=
'TextLoggerHook'
),
# dict(type='TensorboardLoggerHook')
])
# yapf:enable
# runtime settings
total_epochs
=
4
# actual epoch = 4 * 3 = 12
dist_params
=
dict
(
backend
=
'nccl'
)
log_level
=
'INFO'
work_dir
=
'./work_dirs/faster_rcnn_r50_fpn_1x_voc0712'
load_from
=
None
resume_from
=
None
workflow
=
[(
'train'
,
1
)]
mmdet/apis/train.py
View file @
ee26c6b9
...
@@ -6,8 +6,8 @@ import torch
...
@@ -6,8 +6,8 @@ import torch
from
mmcv.runner
import
Runner
,
DistSamplerSeedHook
from
mmcv.runner
import
Runner
,
DistSamplerSeedHook
from
mmcv.parallel
import
MMDataParallel
,
MMDistributedDataParallel
from
mmcv.parallel
import
MMDataParallel
,
MMDistributedDataParallel
from
mmdet.core
import
(
DistOptimizerHook
,
Coco
DistEval
Recall
Hook
,
from
mmdet.core
import
(
DistOptimizerHook
,
DistEval
mAP
Hook
,
CocoDistEvalmAPHook
)
CocoDistEvalRecallHook
,
CocoDistEvalmAPHook
)
from
mmdet.datasets
import
build_dataloader
from
mmdet.datasets
import
build_dataloader
from
mmdet.models
import
RPN
from
mmdet.models
import
RPN
from
.env
import
get_root_logger
from
.env
import
get_root_logger
...
@@ -81,9 +81,13 @@ def _dist_train(model, dataset, cfg, validate=False):
...
@@ -81,9 +81,13 @@ def _dist_train(model, dataset, cfg, validate=False):
# register eval hooks
# register eval hooks
if
validate
:
if
validate
:
if
isinstance
(
model
.
module
,
RPN
):
if
isinstance
(
model
.
module
,
RPN
):
# TODO: implement recall hooks for other datasets
runner
.
register_hook
(
CocoDistEvalRecallHook
(
cfg
.
data
.
val
))
runner
.
register_hook
(
CocoDistEvalRecallHook
(
cfg
.
data
.
val
))
elif
cfg
.
data
.
val
.
type
==
'CocoDataset'
:
else
:
if
cfg
.
data
.
val
.
type
==
'CocoDataset'
:
runner
.
register_hook
(
CocoDistEvalmAPHook
(
cfg
.
data
.
val
))
runner
.
register_hook
(
CocoDistEvalmAPHook
(
cfg
.
data
.
val
))
else
:
runner
.
register_hook
(
DistEvalmAPHook
(
cfg
.
data
.
val
))
if
cfg
.
resume_from
:
if
cfg
.
resume_from
:
runner
.
resume
(
cfg
.
resume_from
)
runner
.
resume
(
cfg
.
resume_from
)
...
...
mmdet/core/bbox/assign_sampling.py
View file @
ee26c6b9
...
@@ -3,23 +3,23 @@ import mmcv
...
@@ -3,23 +3,23 @@ import mmcv
from
.
import
assigners
,
samplers
from
.
import
assigners
,
samplers
def
build_assigner
(
cfg
,
default_args
=
None
):
def
build_assigner
(
cfg
,
**
kwargs
):
if
isinstance
(
cfg
,
assigners
.
BaseAssigner
):
if
isinstance
(
cfg
,
assigners
.
BaseAssigner
):
return
cfg
return
cfg
elif
isinstance
(
cfg
,
dict
):
elif
isinstance
(
cfg
,
dict
):
return
mmcv
.
runner
.
obj_from_dict
(
return
mmcv
.
runner
.
obj_from_dict
(
cfg
,
assigners
,
default_args
=
default_
args
)
cfg
,
assigners
,
default_args
=
kw
args
)
else
:
else
:
raise
TypeError
(
'Invalid type {} for building a sampler'
.
format
(
raise
TypeError
(
'Invalid type {} for building a sampler'
.
format
(
type
(
cfg
)))
type
(
cfg
)))
def
build_sampler
(
cfg
,
default_args
=
None
):
def
build_sampler
(
cfg
,
**
kwargs
):
if
isinstance
(
cfg
,
samplers
.
BaseSampler
):
if
isinstance
(
cfg
,
samplers
.
BaseSampler
):
return
cfg
return
cfg
elif
isinstance
(
cfg
,
dict
):
elif
isinstance
(
cfg
,
dict
):
return
mmcv
.
runner
.
obj_from_dict
(
return
mmcv
.
runner
.
obj_from_dict
(
cfg
,
samplers
,
default_args
=
default_
args
)
cfg
,
samplers
,
default_args
=
kw
args
)
else
:
else
:
raise
TypeError
(
'Invalid type {} for building a sampler'
.
format
(
raise
TypeError
(
'Invalid type {} for building a sampler'
.
format
(
type
(
cfg
)))
type
(
cfg
)))
...
...
mmdet/core/bbox/samplers/__init__.py
View file @
ee26c6b9
...
@@ -4,10 +4,11 @@ from .random_sampler import RandomSampler
...
@@ -4,10 +4,11 @@ from .random_sampler import RandomSampler
from
.instance_balanced_pos_sampler
import
InstanceBalancedPosSampler
from
.instance_balanced_pos_sampler
import
InstanceBalancedPosSampler
from
.iou_balanced_neg_sampler
import
IoUBalancedNegSampler
from
.iou_balanced_neg_sampler
import
IoUBalancedNegSampler
from
.combined_sampler
import
CombinedSampler
from
.combined_sampler
import
CombinedSampler
from
.ohem_sampler
import
OHEMSampler
from
.sampling_result
import
SamplingResult
from
.sampling_result
import
SamplingResult
__all__
=
[
__all__
=
[
'BaseSampler'
,
'PseudoSampler'
,
'RandomSampler'
,
'BaseSampler'
,
'PseudoSampler'
,
'RandomSampler'
,
'InstanceBalancedPosSampler'
,
'IoUBalancedNegSampler'
,
'CombinedSampler'
,
'InstanceBalancedPosSampler'
,
'IoUBalancedNegSampler'
,
'CombinedSampler'
,
'SamplingResult'
'OHEMSampler'
,
'SamplingResult'
]
]
mmdet/core/bbox/samplers/base_sampler.py
View file @
ee26c6b9
...
@@ -7,19 +7,33 @@ from .sampling_result import SamplingResult
...
@@ -7,19 +7,33 @@ from .sampling_result import SamplingResult
class
BaseSampler
(
metaclass
=
ABCMeta
):
class
BaseSampler
(
metaclass
=
ABCMeta
):
def
__init__
(
self
):
def
__init__
(
self
,
num
,
pos_fraction
,
neg_pos_ub
=-
1
,
add_gt_as_proposals
=
True
,
**
kwargs
):
self
.
num
=
num
self
.
pos_fraction
=
pos_fraction
self
.
neg_pos_ub
=
neg_pos_ub
self
.
add_gt_as_proposals
=
add_gt_as_proposals
self
.
pos_sampler
=
self
self
.
pos_sampler
=
self
self
.
neg_sampler
=
self
self
.
neg_sampler
=
self
@
abstractmethod
@
abstractmethod
def
_sample_pos
(
self
,
assign_result
,
num_expected
):
def
_sample_pos
(
self
,
assign_result
,
num_expected
,
**
kwargs
):
pass
pass
@
abstractmethod
@
abstractmethod
def
_sample_neg
(
self
,
assign_result
,
num_expected
):
def
_sample_neg
(
self
,
assign_result
,
num_expected
,
**
kwargs
):
pass
pass
def
sample
(
self
,
assign_result
,
bboxes
,
gt_bboxes
,
gt_labels
=
None
):
def
sample
(
self
,
assign_result
,
bboxes
,
gt_bboxes
,
gt_labels
=
None
,
**
kwargs
):
"""Sample positive and negative bboxes.
"""Sample positive and negative bboxes.
This is a simple implementation of bbox sampling given candidates,
This is a simple implementation of bbox sampling given candidates,
...
@@ -44,8 +58,8 @@ class BaseSampler(metaclass=ABCMeta):
...
@@ -44,8 +58,8 @@ class BaseSampler(metaclass=ABCMeta):
gt_flags
=
torch
.
cat
([
gt_ones
,
gt_flags
])
gt_flags
=
torch
.
cat
([
gt_ones
,
gt_flags
])
num_expected_pos
=
int
(
self
.
num
*
self
.
pos_fraction
)
num_expected_pos
=
int
(
self
.
num
*
self
.
pos_fraction
)
pos_inds
=
self
.
pos_sampler
.
_sample_pos
(
assign_result
,
pos_inds
=
self
.
pos_sampler
.
_sample_pos
(
num_expected_po
s
)
assign_result
,
num_expected_pos
,
bboxes
=
bboxes
,
**
kwarg
s
)
# We found that sampled indices have duplicated items occasionally.
# We found that sampled indices have duplicated items occasionally.
# (may be a bug of PyTorch)
# (may be a bug of PyTorch)
pos_inds
=
pos_inds
.
unique
()
pos_inds
=
pos_inds
.
unique
()
...
@@ -56,8 +70,8 @@ class BaseSampler(metaclass=ABCMeta):
...
@@ -56,8 +70,8 @@ class BaseSampler(metaclass=ABCMeta):
neg_upper_bound
=
int
(
self
.
neg_pos_ub
*
_pos
)
neg_upper_bound
=
int
(
self
.
neg_pos_ub
*
_pos
)
if
num_expected_neg
>
neg_upper_bound
:
if
num_expected_neg
>
neg_upper_bound
:
num_expected_neg
=
neg_upper_bound
num_expected_neg
=
neg_upper_bound
neg_inds
=
self
.
neg_sampler
.
_sample_neg
(
assign_result
,
neg_inds
=
self
.
neg_sampler
.
_sample_neg
(
num_expected_neg
)
assign_result
,
num_expected_neg
,
bboxes
=
bboxes
,
**
kwargs
)
neg_inds
=
neg_inds
.
unique
()
neg_inds
=
neg_inds
.
unique
()
return
SamplingResult
(
pos_inds
,
neg_inds
,
bboxes
,
gt_bboxes
,
return
SamplingResult
(
pos_inds
,
neg_inds
,
bboxes
,
gt_bboxes
,
...
...
mmdet/core/bbox/samplers/combined_sampler.py
View file @
ee26c6b9
from
.
random
_sampler
import
Random
Sampler
from
.
base
_sampler
import
Base
Sampler
from
..assign_sampling
import
build_sampler
from
..assign_sampling
import
build_sampler
class
CombinedSampler
(
Random
Sampler
):
class
CombinedSampler
(
Base
Sampler
):
def
__init__
(
self
,
num
,
pos_fraction
,
pos_sampler
,
neg_sampler
,
**
kwargs
):
def
__init__
(
self
,
pos_sampler
,
neg_sampler
,
**
kwargs
):
super
(
CombinedSampler
,
self
).
__init__
(
num
,
pos_fraction
,
**
kwargs
)
super
(
CombinedSampler
,
self
).
__init__
(
**
kwargs
)
default_args
=
dict
(
num
=
num
,
pos_fraction
=
pos_fraction
)
self
.
pos_sampler
=
build_sampler
(
pos_sampler
,
**
kwargs
)
default_args
.
update
(
kwargs
)
self
.
neg_sampler
=
build_sampler
(
neg_sampler
,
**
kwargs
)
self
.
pos_sampler
=
build_sampler
(
pos_sampler
,
default_args
=
default_args
)
def
_sample_pos
(
self
,
**
kwargs
):
self
.
neg_sampler
=
build_sampler
(
raise
NotImplementedError
neg_sampler
,
default_args
=
default_args
)
def
_sample_neg
(
self
,
**
kwargs
):
raise
NotImplementedError
mmdet/core/bbox/samplers/instance_balanced_pos_sampler.py
View file @
ee26c6b9
...
@@ -6,7 +6,7 @@ from .random_sampler import RandomSampler
...
@@ -6,7 +6,7 @@ from .random_sampler import RandomSampler
class
InstanceBalancedPosSampler
(
RandomSampler
):
class
InstanceBalancedPosSampler
(
RandomSampler
):
def
_sample_pos
(
self
,
assign_result
,
num_expected
):
def
_sample_pos
(
self
,
assign_result
,
num_expected
,
**
kwargs
):
pos_inds
=
torch
.
nonzero
(
assign_result
.
gt_inds
>
0
)
pos_inds
=
torch
.
nonzero
(
assign_result
.
gt_inds
>
0
)
if
pos_inds
.
numel
()
!=
0
:
if
pos_inds
.
numel
()
!=
0
:
pos_inds
=
pos_inds
.
squeeze
(
1
)
pos_inds
=
pos_inds
.
squeeze
(
1
)
...
...
mmdet/core/bbox/samplers/iou_balanced_neg_sampler.py
View file @
ee26c6b9
...
@@ -19,7 +19,7 @@ class IoUBalancedNegSampler(RandomSampler):
...
@@ -19,7 +19,7 @@ class IoUBalancedNegSampler(RandomSampler):
self
.
hard_thr
=
hard_thr
self
.
hard_thr
=
hard_thr
self
.
hard_fraction
=
hard_fraction
self
.
hard_fraction
=
hard_fraction
def
_sample_neg
(
self
,
assign_result
,
num_expected
):
def
_sample_neg
(
self
,
assign_result
,
num_expected
,
**
kwargs
):
neg_inds
=
torch
.
nonzero
(
assign_result
.
gt_inds
==
0
)
neg_inds
=
torch
.
nonzero
(
assign_result
.
gt_inds
==
0
)
if
neg_inds
.
numel
()
!=
0
:
if
neg_inds
.
numel
()
!=
0
:
neg_inds
=
neg_inds
.
squeeze
(
1
)
neg_inds
=
neg_inds
.
squeeze
(
1
)
...
...
mmdet/core/bbox/samplers/ohem_sampler.py
0 → 100644
View file @
ee26c6b9
import
torch
from
.base_sampler
import
BaseSampler
from
..transforms
import
bbox2roi
class
OHEMSampler
(
BaseSampler
):
def
__init__
(
self
,
num
,
pos_fraction
,
context
,
neg_pos_ub
=-
1
,
add_gt_as_proposals
=
True
,
**
kwargs
):
super
(
OHEMSampler
,
self
).
__init__
(
num
,
pos_fraction
,
neg_pos_ub
,
add_gt_as_proposals
)
self
.
bbox_roi_extractor
=
context
.
bbox_roi_extractor
self
.
bbox_head
=
context
.
bbox_head
def
hard_mining
(
self
,
inds
,
num_expected
,
bboxes
,
labels
,
feats
):
with
torch
.
no_grad
():
rois
=
bbox2roi
([
bboxes
])
bbox_feats
=
self
.
bbox_roi_extractor
(
feats
[:
self
.
bbox_roi_extractor
.
num_inputs
],
rois
)
cls_score
,
_
=
self
.
bbox_head
(
bbox_feats
)
loss
=
self
.
bbox_head
.
loss
(
cls_score
=
cls_score
,
bbox_pred
=
None
,
labels
=
labels
,
label_weights
=
cls_score
.
new_ones
(
cls_score
.
size
(
0
)),
bbox_targets
=
None
,
bbox_weights
=
None
,
reduce
=
False
)[
'loss_cls'
]
_
,
topk_loss_inds
=
loss
.
topk
(
num_expected
)
return
inds
[
topk_loss_inds
]
def
_sample_pos
(
self
,
assign_result
,
num_expected
,
bboxes
=
None
,
feats
=
None
,
**
kwargs
):
# Sample some hard positive samples
pos_inds
=
torch
.
nonzero
(
assign_result
.
gt_inds
>
0
)
if
pos_inds
.
numel
()
!=
0
:
pos_inds
=
pos_inds
.
squeeze
(
1
)
if
pos_inds
.
numel
()
<=
num_expected
:
return
pos_inds
else
:
return
self
.
hard_mining
(
pos_inds
,
num_expected
,
bboxes
[
pos_inds
],
assign_result
.
labels
[
pos_inds
],
feats
)
def
_sample_neg
(
self
,
assign_result
,
num_expected
,
bboxes
=
None
,
feats
=
None
,
**
kwargs
):
# Sample some hard negative samples
neg_inds
=
torch
.
nonzero
(
assign_result
.
gt_inds
==
0
)
if
neg_inds
.
numel
()
!=
0
:
neg_inds
=
neg_inds
.
squeeze
(
1
)
if
len
(
neg_inds
)
<=
num_expected
:
return
neg_inds
else
:
return
self
.
hard_mining
(
neg_inds
,
num_expected
,
bboxes
[
neg_inds
],
assign_result
.
labels
[
neg_inds
],
feats
)
mmdet/core/bbox/samplers/pseudo_sampler.py
View file @
ee26c6b9
...
@@ -6,16 +6,16 @@ from .sampling_result import SamplingResult
...
@@ -6,16 +6,16 @@ from .sampling_result import SamplingResult
class
PseudoSampler
(
BaseSampler
):
class
PseudoSampler
(
BaseSampler
):
def
__init__
(
self
):
def
__init__
(
self
,
**
kwargs
):
pass
pass
def
_sample_pos
(
self
):
def
_sample_pos
(
self
,
**
kwargs
):
raise
NotImplementedError
raise
NotImplementedError
def
_sample_neg
(
self
):
def
_sample_neg
(
self
,
**
kwargs
):
raise
NotImplementedError
raise
NotImplementedError
def
sample
(
self
,
assign_result
,
bboxes
,
gt_bboxes
):
def
sample
(
self
,
assign_result
,
bboxes
,
gt_bboxes
,
**
kwargs
):
pos_inds
=
torch
.
nonzero
(
pos_inds
=
torch
.
nonzero
(
assign_result
.
gt_inds
>
0
).
squeeze
(
-
1
).
unique
()
assign_result
.
gt_inds
>
0
).
squeeze
(
-
1
).
unique
()
neg_inds
=
torch
.
nonzero
(
neg_inds
=
torch
.
nonzero
(
...
...
mmdet/core/bbox/samplers/random_sampler.py
View file @
ee26c6b9
...
@@ -10,12 +10,10 @@ class RandomSampler(BaseSampler):
...
@@ -10,12 +10,10 @@ class RandomSampler(BaseSampler):
num
,
num
,
pos_fraction
,
pos_fraction
,
neg_pos_ub
=-
1
,
neg_pos_ub
=-
1
,
add_gt_as_proposals
=
True
):
add_gt_as_proposals
=
True
,
super
(
RandomSampler
,
self
).
__init__
()
**
kwargs
):
self
.
num
=
num
super
(
RandomSampler
,
self
).
__init__
(
num
,
pos_fraction
,
neg_pos_ub
,
self
.
pos_fraction
=
pos_fraction
add_gt_as_proposals
)
self
.
neg_pos_ub
=
neg_pos_ub
self
.
add_gt_as_proposals
=
add_gt_as_proposals
@
staticmethod
@
staticmethod
def
random_choice
(
gallery
,
num
):
def
random_choice
(
gallery
,
num
):
...
@@ -34,7 +32,7 @@ class RandomSampler(BaseSampler):
...
@@ -34,7 +32,7 @@ class RandomSampler(BaseSampler):
rand_inds
=
torch
.
from_numpy
(
rand_inds
).
long
().
to
(
gallery
.
device
)
rand_inds
=
torch
.
from_numpy
(
rand_inds
).
long
().
to
(
gallery
.
device
)
return
gallery
[
rand_inds
]
return
gallery
[
rand_inds
]
def
_sample_pos
(
self
,
assign_result
,
num_expected
):
def
_sample_pos
(
self
,
assign_result
,
num_expected
,
**
kwargs
):
"""Randomly sample some positive samples."""
"""Randomly sample some positive samples."""
pos_inds
=
torch
.
nonzero
(
assign_result
.
gt_inds
>
0
)
pos_inds
=
torch
.
nonzero
(
assign_result
.
gt_inds
>
0
)
if
pos_inds
.
numel
()
!=
0
:
if
pos_inds
.
numel
()
!=
0
:
...
@@ -44,7 +42,7 @@ class RandomSampler(BaseSampler):
...
@@ -44,7 +42,7 @@ class RandomSampler(BaseSampler):
else
:
else
:
return
self
.
random_choice
(
pos_inds
,
num_expected
)
return
self
.
random_choice
(
pos_inds
,
num_expected
)
def
_sample_neg
(
self
,
assign_result
,
num_expected
):
def
_sample_neg
(
self
,
assign_result
,
num_expected
,
**
kwargs
):
"""Randomly sample some negative samples."""
"""Randomly sample some negative samples."""
neg_inds
=
torch
.
nonzero
(
assign_result
.
gt_inds
==
0
)
neg_inds
=
torch
.
nonzero
(
assign_result
.
gt_inds
==
0
)
if
neg_inds
.
numel
()
!=
0
:
if
neg_inds
.
numel
()
!=
0
:
...
...
mmdet/core/evaluation/__init__.py
View file @
ee26c6b9
...
@@ -2,7 +2,7 @@ from .class_names import (voc_classes, imagenet_det_classes,
...
@@ -2,7 +2,7 @@ from .class_names import (voc_classes, imagenet_det_classes,
imagenet_vid_classes
,
coco_classes
,
dataset_aliases
,
imagenet_vid_classes
,
coco_classes
,
dataset_aliases
,
get_classes
)
get_classes
)
from
.coco_utils
import
coco_eval
,
fast_eval_recall
,
results2json
from
.coco_utils
import
coco_eval
,
fast_eval_recall
,
results2json
from
.eval_hooks
import
(
DistEvalHook
,
CocoDistEvalRecallHook
,
from
.eval_hooks
import
(
DistEvalHook
,
DistEvalmAPHook
,
CocoDistEvalRecallHook
,
CocoDistEvalmAPHook
)
CocoDistEvalmAPHook
)
from
.mean_ap
import
average_precision
,
eval_map
,
print_map_summary
from
.mean_ap
import
average_precision
,
eval_map
,
print_map_summary
from
.recall
import
(
eval_recalls
,
print_recall_summary
,
plot_num_recall
,
from
.recall
import
(
eval_recalls
,
print_recall_summary
,
plot_num_recall
,
...
@@ -11,7 +11,7 @@ from .recall import (eval_recalls, print_recall_summary, plot_num_recall,
...
@@ -11,7 +11,7 @@ from .recall import (eval_recalls, print_recall_summary, plot_num_recall,
__all__
=
[
__all__
=
[
'voc_classes'
,
'imagenet_det_classes'
,
'imagenet_vid_classes'
,
'voc_classes'
,
'imagenet_det_classes'
,
'imagenet_vid_classes'
,
'coco_classes'
,
'dataset_aliases'
,
'get_classes'
,
'coco_eval'
,
'coco_classes'
,
'dataset_aliases'
,
'get_classes'
,
'coco_eval'
,
'fast_eval_recall'
,
'results2json'
,
'DistEvalHook'
,
'fast_eval_recall'
,
'results2json'
,
'DistEvalHook'
,
'DistEvalmAPHook'
,
'CocoDistEvalRecallHook'
,
'CocoDistEvalmAPHook'
,
'average_precision'
,
'CocoDistEvalRecallHook'
,
'CocoDistEvalmAPHook'
,
'average_precision'
,
'eval_map'
,
'print_map_summary'
,
'eval_recalls'
,
'print_recall_summary'
,
'eval_map'
,
'print_map_summary'
,
'eval_recalls'
,
'print_recall_summary'
,
'plot_num_recall'
,
'plot_iou_recall'
'plot_num_recall'
,
'plot_iou_recall'
...
...
mmdet/core/evaluation/class_names.py
View file @
ee26c6b9
...
@@ -63,18 +63,18 @@ def imagenet_vid_classes():
...
@@ -63,18 +63,18 @@ def imagenet_vid_classes():
def
coco_classes
():
def
coco_classes
():
return
[
return
[
'person'
,
'bicycle'
,
'car'
,
'motorcycle'
,
'airplane'
,
'bus'
,
'train'
,
'person'
,
'bicycle'
,
'car'
,
'motorcycle'
,
'airplane'
,
'bus'
,
'train'
,
'truck'
,
'boat'
,
'traffic
light'
,
'fire
hydrant'
,
'stop
sign'
,
'truck'
,
'boat'
,
'traffic
_
light'
,
'fire
_
hydrant'
,
'stop
_
sign'
,
'parking
meter'
,
'bench'
,
'bird'
,
'cat'
,
'dog'
,
'horse'
,
'sheep'
,
'parking
_
meter'
,
'bench'
,
'bird'
,
'cat'
,
'dog'
,
'horse'
,
'sheep'
,
'cow'
,
'elephant'
,
'bear'
,
'zebra'
,
'giraffe'
,
'backpack'
,
'umbrella'
,
'cow'
,
'elephant'
,
'bear'
,
'zebra'
,
'giraffe'
,
'backpack'
,
'umbrella'
,
'handbag'
,
'tie'
,
'suitcase'
,
'frisbee'
,
'skis'
,
'snowboard'
,
'handbag'
,
'tie'
,
'suitcase'
,
'frisbee'
,
'skis'
,
'snowboard'
,
'sports
ball'
,
'kite'
,
'baseball
bat'
,
'baseball
glove'
,
'skateboard'
,
'sports
_
ball'
,
'kite'
,
'baseball
_
bat'
,
'baseball
_
glove'
,
'skateboard'
,
'surfboard'
,
'tennis
racket'
,
'bottle'
,
'wine
glass'
,
'cup'
,
'fork'
,
'surfboard'
,
'tennis
_
racket'
,
'bottle'
,
'wine
_
glass'
,
'cup'
,
'fork'
,
'knife'
,
'spoon'
,
'bowl'
,
'banana'
,
'apple'
,
'sandwich'
,
'orange'
,
'knife'
,
'spoon'
,
'bowl'
,
'banana'
,
'apple'
,
'sandwich'
,
'orange'
,
'broccoli'
,
'carrot'
,
'hot
dog'
,
'pizza'
,
'donut'
,
'cake'
,
'chair'
,
'broccoli'
,
'carrot'
,
'hot
_
dog'
,
'pizza'
,
'donut'
,
'cake'
,
'chair'
,
'couch'
,
'potted
plant'
,
'bed'
,
'dining
table'
,
'toilet'
,
'tv'
,
'couch'
,
'potted
_
plant'
,
'bed'
,
'dining
_
table'
,
'toilet'
,
'tv'
,
'laptop'
,
'mouse'
,
'remote'
,
'keyboard'
,
'cell
phone'
,
'microwave'
,
'laptop'
,
'mouse'
,
'remote'
,
'keyboard'
,
'cell
_
phone'
,
'microwave'
,
'oven'
,
'toaster'
,
'sink'
,
'refrigerator'
,
'book'
,
'clock'
,
'vase'
,
'oven'
,
'toaster'
,
'sink'
,
'refrigerator'
,
'book'
,
'clock'
,
'vase'
,
'scissors'
,
'teddy
bear'
,
'hair
drier'
,
'toothbrush'
'scissors'
,
'teddy
_
bear'
,
'hair
_
drier'
,
'toothbrush'
]
]
...
...
mmdet/core/evaluation/eval_hooks.py
View file @
ee26c6b9
...
@@ -12,6 +12,7 @@ from pycocotools.cocoeval import COCOeval
...
@@ -12,6 +12,7 @@ from pycocotools.cocoeval import COCOeval
from
torch.utils.data
import
Dataset
from
torch.utils.data
import
Dataset
from
.coco_utils
import
results2json
,
fast_eval_recall
from
.coco_utils
import
results2json
,
fast_eval_recall
from
.mean_ap
import
eval_map
from
mmdet
import
datasets
from
mmdet
import
datasets
...
@@ -102,6 +103,44 @@ class DistEvalHook(Hook):
...
@@ -102,6 +103,44 @@ class DistEvalHook(Hook):
raise
NotImplementedError
raise
NotImplementedError
class
DistEvalmAPHook
(
DistEvalHook
):
def
evaluate
(
self
,
runner
,
results
):
gt_bboxes
=
[]
gt_labels
=
[]
gt_ignore
=
[]
if
self
.
dataset
.
with_crowd
else
None
for
i
in
range
(
len
(
self
.
dataset
)):
ann
=
self
.
dataset
.
get_ann_info
(
i
)
bboxes
=
ann
[
'bboxes'
]
labels
=
ann
[
'labels'
]
if
gt_ignore
is
not
None
:
ignore
=
np
.
concatenate
([
np
.
zeros
(
bboxes
.
shape
[
0
],
dtype
=
np
.
bool
),
np
.
ones
(
ann
[
'bboxes_ignore'
].
shape
[
0
],
dtype
=
np
.
bool
)
])
gt_ignore
.
append
(
ignore
)
bboxes
=
np
.
vstack
([
bboxes
,
ann
[
'bboxes_ignore'
]])
labels
=
np
.
concatenate
([
labels
,
ann
[
'labels_ignore'
]])
gt_bboxes
.
append
(
bboxes
)
gt_labels
.
append
(
labels
)
# If the dataset is VOC2007, then use 11 points mAP evaluation.
if
hasattr
(
self
.
dataset
,
'year'
)
and
self
.
dataset
.
year
==
2007
:
ds_name
=
'voc07'
else
:
ds_name
=
self
.
dataset
.
CLASSES
mean_ap
,
eval_results
=
eval_map
(
results
,
gt_bboxes
,
gt_labels
,
gt_ignore
=
gt_ignore
,
scale_ranges
=
None
,
iou_thr
=
0.5
,
dataset
=
ds_name
,
print_summary
=
True
)
runner
.
log_buffer
.
output
[
'mAP'
]
=
mean_ap
runner
.
log_buffer
.
ready
=
True
class
CocoDistEvalRecallHook
(
DistEvalHook
):
class
CocoDistEvalRecallHook
(
DistEvalHook
):
def
__init__
(
self
,
def
__init__
(
self
,
...
...
mmdet/core/loss/losses.py
View file @
ee26c6b9
...
@@ -10,11 +10,15 @@ def weighted_nll_loss(pred, label, weight, avg_factor=None):
...
@@ -10,11 +10,15 @@ def weighted_nll_loss(pred, label, weight, avg_factor=None):
return
torch
.
sum
(
raw
*
weight
)[
None
]
/
avg_factor
return
torch
.
sum
(
raw
*
weight
)[
None
]
/
avg_factor
def
weighted_cross_entropy
(
pred
,
label
,
weight
,
avg_factor
=
None
):
def
weighted_cross_entropy
(
pred
,
label
,
weight
,
avg_factor
=
None
,
reduce
=
True
):
if
avg_factor
is
None
:
if
avg_factor
is
None
:
avg_factor
=
max
(
torch
.
sum
(
weight
>
0
).
float
().
item
(),
1.
)
avg_factor
=
max
(
torch
.
sum
(
weight
>
0
).
float
().
item
(),
1.
)
raw
=
F
.
cross_entropy
(
pred
,
label
,
reduction
=
'none'
)
raw
=
F
.
cross_entropy
(
pred
,
label
,
reduction
=
'none'
)
if
reduce
:
return
torch
.
sum
(
raw
*
weight
)[
None
]
/
avg_factor
return
torch
.
sum
(
raw
*
weight
)[
None
]
/
avg_factor
else
:
return
raw
*
weight
/
avg_factor
def
weighted_binary_cross_entropy
(
pred
,
label
,
weight
,
avg_factor
=
None
):
def
weighted_binary_cross_entropy
(
pred
,
label
,
weight
,
avg_factor
=
None
):
...
...
mmdet/datasets/__init__.py
View file @
ee26c6b9
from
.custom
import
CustomDataset
from
.custom
import
CustomDataset
from
.xml_style
import
XMLDataset
from
.coco
import
CocoDataset
from
.coco
import
CocoDataset
from
.voc
import
VOCDataset
from
.loader
import
GroupSampler
,
DistributedGroupSampler
,
build_dataloader
from
.loader
import
GroupSampler
,
DistributedGroupSampler
,
build_dataloader
from
.utils
import
to_tensor
,
random_scale
,
show_ann
,
get_dataset
from
.utils
import
to_tensor
,
random_scale
,
show_ann
,
get_dataset
from
.concat_dataset
import
ConcatDataset
from
.concat_dataset
import
ConcatDataset
from
.repeat_dataset
import
RepeatDataset
from
.repeat_dataset
import
RepeatDataset
__all__
=
[
__all__
=
[
'CustomDataset'
,
'CocoDataset'
,
'
GroupSampler'
,
'Distributed
GroupSampler'
,
'CustomDataset'
,
'XMLDataset'
,
'CocoDataset'
,
'
VOCDataset'
,
'
GroupSampler'
,
'build_dataloader'
,
'to_tensor'
,
'random_scale'
,
'show_ann'
,
'DistributedGroupSampler'
,
'build_dataloader'
,
'to_tensor'
,
'random_scale'
,
'get_dataset'
,
'ConcatDataset'
,
'RepeatDataset'
,
'show_ann'
,
'get_dataset'
,
'ConcatDataset'
,
'RepeatDataset'
]
]
mmdet/datasets/coco.py
View file @
ee26c6b9
...
@@ -6,6 +6,21 @@ from .custom import CustomDataset
...
@@ -6,6 +6,21 @@ from .custom import CustomDataset
class
CocoDataset
(
CustomDataset
):
class
CocoDataset
(
CustomDataset
):
CLASSES
=
(
'person'
,
'bicycle'
,
'car'
,
'motorcycle'
,
'airplane'
,
'bus'
,
'train'
,
'truck'
,
'boat'
,
'traffic_light'
,
'fire_hydrant'
,
'stop_sign'
,
'parking_meter'
,
'bench'
,
'bird'
,
'cat'
,
'dog'
,
'horse'
,
'sheep'
,
'cow'
,
'elephant'
,
'bear'
,
'zebra'
,
'giraffe'
,
'backpack'
,
'umbrella'
,
'handbag'
,
'tie'
,
'suitcase'
,
'frisbee'
,
'skis'
,
'snowboard'
,
'sports_ball'
,
'kite'
,
'baseball_bat'
,
'baseball_glove'
,
'skateboard'
,
'surfboard'
,
'tennis_racket'
,
'bottle'
,
'wine_glass'
,
'cup'
,
'fork'
,
'knife'
,
'spoon'
,
'bowl'
,
'banana'
,
'apple'
,
'sandwich'
,
'orange'
,
'broccoli'
,
'carrot'
,
'hot_dog'
,
'pizza'
,
'donut'
,
'cake'
,
'chair'
,
'couch'
,
'potted_plant'
,
'bed'
,
'dining_table'
,
'toilet'
,
'tv'
,
'laptop'
,
'mouse'
,
'remote'
,
'keyboard'
,
'cell_phone'
,
'microwave'
,
'oven'
,
'toaster'
,
'sink'
,
'refrigerator'
,
'book'
,
'clock'
,
'vase'
,
'scissors'
,
'teddy_bear'
,
'hair_drier'
,
'toothbrush'
)
def
load_annotations
(
self
,
ann_file
):
def
load_annotations
(
self
,
ann_file
):
self
.
coco
=
COCO
(
ann_file
)
self
.
coco
=
COCO
(
ann_file
)
self
.
cat_ids
=
self
.
coco
.
getCatIds
()
self
.
cat_ids
=
self
.
coco
.
getCatIds
()
...
...
mmdet/datasets/concat_dataset.py
View file @
ee26c6b9
...
@@ -3,16 +3,18 @@ from torch.utils.data.dataset import ConcatDataset as _ConcatDataset
...
@@ -3,16 +3,18 @@ from torch.utils.data.dataset import ConcatDataset as _ConcatDataset
class
ConcatDataset
(
_ConcatDataset
):
class
ConcatDataset
(
_ConcatDataset
):
"""
"""A wrapper of concatenated dataset.
Same as torch.utils.data.dataset.ConcatDataset, but
Same as :obj:`torch.utils.data.dataset.ConcatDataset`, but
concat the group flag for image aspect ratio.
concat the group flag for image aspect ratio.
Args:
datasets (list[:obj:`Dataset`]): A list of datasets.
"""
"""
def
__init__
(
self
,
datasets
):
def
__init__
(
self
,
datasets
):
"""
flag: Images with aspect ratio greater than 1 will be set as group 1,
otherwise group 0.
"""
super
(
ConcatDataset
,
self
).
__init__
(
datasets
)
super
(
ConcatDataset
,
self
).
__init__
(
datasets
)
self
.
CLASSES
=
datasets
[
0
].
CLASSES
if
hasattr
(
datasets
[
0
],
'flag'
):
if
hasattr
(
datasets
[
0
],
'flag'
):
flags
=
[]
flags
=
[]
for
i
in
range
(
0
,
len
(
datasets
)):
for
i
in
range
(
0
,
len
(
datasets
)):
...
...
Prev
1
2
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment