Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
ModelZoo
SOLOv2-pytorch
Commits
ba73bcc5
Unverified
Commit
ba73bcc5
authored
Feb 07, 2019
by
Kai Chen
Committed by
GitHub
Feb 07, 2019
Browse files
Merge pull request #257 from open-mmlab/pytorch-1.0
Support Pytorch 1.0
parents
b6561a1a
e83e5d0f
Changes
16
Hide whitespace changes
Inline
Side-by-side
Showing
16 changed files
with
775 additions
and
771 deletions
+775
-771
INSTALL.md
INSTALL.md
+3
-3
MODEL_ZOO.md
MODEL_ZOO.md
+7
-1
README.md
README.md
+6
-0
mmdet/core/loss/losses.py
mmdet/core/loss/losses.py
+18
-10
mmdet/ops/dcn/src/deform_conv_cuda.cpp
mmdet/ops/dcn/src/deform_conv_cuda.cpp
+647
-586
mmdet/ops/dcn/src/deform_pool_cuda.cpp
mmdet/ops/dcn/src/deform_pool_cuda.cpp
+67
-124
mmdet/ops/nms/cpu_nms.pyx
mmdet/ops/nms/cpu_nms.pyx
+2
-0
mmdet/ops/nms/cpu_soft_nms.pyx
mmdet/ops/nms/cpu_soft_nms.pyx
+2
-0
mmdet/ops/nms/gpu_nms.pyx
mmdet/ops/nms/gpu_nms.pyx
+2
-0
mmdet/ops/roi_align/functions/roi_align.py
mmdet/ops/roi_align/functions/roi_align.py
+6
-6
mmdet/ops/roi_align/src/roi_align_cuda.cpp
mmdet/ops/roi_align/src/roi_align_cuda.cpp
+1
-1
mmdet/ops/roi_align/src/roi_align_kernel.cu
mmdet/ops/roi_align/src/roi_align_kernel.cu
+3
-16
mmdet/ops/roi_pool/functions/roi_pool.py
mmdet/ops/roi_pool/functions/roi_pool.py
+5
-6
mmdet/ops/roi_pool/src/roi_pool_cuda.cpp
mmdet/ops/roi_pool/src/roi_pool_cuda.cpp
+1
-1
mmdet/ops/roi_pool/src/roi_pool_kernel.cu
mmdet/ops/roi_pool/src/roi_pool_kernel.cu
+3
-15
setup.py
setup.py
+2
-2
No files found.
INSTALL.md
View file @
ba73bcc5
...
@@ -4,13 +4,13 @@
...
@@ -4,13 +4,13 @@
-
Linux (tested on Ubuntu 16.04 and CentOS 7.2)
-
Linux (tested on Ubuntu 16.04 and CentOS 7.2)
-
Python 3.4+
-
Python 3.4+
-
PyTorch
0.4.1
-
PyTorch
1.0
-
Cython
-
Cython
-
[
mmcv
](
https://github.com/open-mmlab/mmcv
)
-
[
mmcv
](
https://github.com/open-mmlab/mmcv
)
>= 0.2.2
### Install mmdetection
### Install mmdetection
a. Install PyTorch
0.4.1
and torchvision following the
[
official instructions
](
https://pytorch.org/
)
.
a. Install PyTorch
1.0
and torchvision following the
[
official instructions
](
https://pytorch.org/
)
.
b. Clone the mmdetection repository.
b. Clone the mmdetection repository.
...
...
MODEL_ZOO.md
View file @
ba73bcc5
...
@@ -10,11 +10,17 @@
...
@@ -10,11 +10,17 @@
### Software environment
### Software environment
-
Python 3.6 / 3.7
-
Python 3.6 / 3.7
-
PyTorch
0.4.1
-
PyTorch
1.0
-
CUDA 9.0.176
-
CUDA 9.0.176
-
CUDNN 7.0.4
-
CUDNN 7.0.4
-
NCCL 2.1.15
-
NCCL 2.1.15
Note: The train time was measured with PyTorch 0.4.1. We will update it later, which should be about 0.02s ~ 0.05s faster.
## Mirror sites
We use AWS as the main site to host our model zoo, and maintain a mirror on aliyun.
You can replace
`https://s3.ap-northeast-2.amazonaws.com`
with
`https://open-mmlab.oss-cn-beijing.aliyuncs.com`
in model urls.
## Common settings
## Common settings
...
...
README.md
View file @
ba73bcc5
...
@@ -3,6 +3,9 @@
...
@@ -3,6 +3,9 @@
## Introduction
## Introduction
The master branch works with
**PyTorch 1.0**
. If you would like to use PyTorch 0.4.1,
please checkout to the
[
pytorch-0.4.1
](
https://github.com/open-mmlab/mmdetection/tree/pytorch-0.4.1
)
branch.
mmdetection is an open source object detection toolbox based on PyTorch. It is
mmdetection is an open source object detection toolbox based on PyTorch. It is
a part of the open-mmlab project developed by
[
Multimedia Laboratory, CUHK
](
http://mmlab.ie.cuhk.edu.hk/
)
.
a part of the open-mmlab project developed by
[
Multimedia Laboratory, CUHK
](
http://mmlab.ie.cuhk.edu.hk/
)
.
...
@@ -36,6 +39,9 @@ This project is released under the [Apache 2.0 license](LICENSE).
...
@@ -36,6 +39,9 @@ This project is released under the [Apache 2.0 license](LICENSE).
## Updates
## Updates
v0.6rc0(06/02/2019)
-
Migrate to PyTorch 1.0.
v0.5.7 (06/02/2019)
v0.5.7 (06/02/2019)
-
Add support for Deformable ConvNet v2. (Many thanks to the authors and
[
@chengdazhi
](
https://github.com/chengdazhi
)
)
-
Add support for Deformable ConvNet v2. (Many thanks to the authors and
[
@chengdazhi
](
https://github.com/chengdazhi
)
)
-
This is the last release based on PyTorch 0.4.1.
-
This is the last release based on PyTorch 0.4.1.
...
...
mmdet/core/loss/losses.py
View file @
ba73bcc5
...
@@ -34,13 +34,21 @@ def sigmoid_focal_loss(pred,
...
@@ -34,13 +34,21 @@ def sigmoid_focal_loss(pred,
weight
,
weight
,
gamma
=
2.0
,
gamma
=
2.0
,
alpha
=
0.25
,
alpha
=
0.25
,
reduction
=
'
elementwise_
mean'
):
reduction
=
'mean'
):
pred_sigmoid
=
pred
.
sigmoid
()
pred_sigmoid
=
pred
.
sigmoid
()
pt
=
(
1
-
pred_sigmoid
)
*
target
+
pred_sigmoid
*
(
1
-
target
)
pt
=
(
1
-
pred_sigmoid
)
*
target
+
pred_sigmoid
*
(
1
-
target
)
weight
=
(
alpha
*
target
+
(
1
-
alpha
)
*
(
1
-
target
))
*
weight
weight
=
(
alpha
*
target
+
(
1
-
alpha
)
*
(
1
-
target
))
*
weight
weight
=
weight
*
pt
.
pow
(
gamma
)
weight
=
weight
*
pt
.
pow
(
gamma
)
return
F
.
binary_cross_entropy_with_logits
(
loss
=
F
.
binary_cross_entropy_with_logits
(
pred
,
target
,
weight
,
reduction
=
reduction
)
pred
,
target
,
reduction
=
'none'
)
*
weight
reduction_enum
=
F
.
_Reduction
.
get_enum
(
reduction
)
# none: 0, mean:1, sum: 2
if
reduction_enum
==
0
:
return
loss
elif
reduction_enum
==
1
:
return
loss
.
mean
()
elif
reduction_enum
==
2
:
return
loss
.
sum
()
def
weighted_sigmoid_focal_loss
(
pred
,
def
weighted_sigmoid_focal_loss
(
pred
,
...
@@ -62,22 +70,22 @@ def mask_cross_entropy(pred, target, label):
...
@@ -62,22 +70,22 @@ def mask_cross_entropy(pred, target, label):
inds
=
torch
.
arange
(
0
,
num_rois
,
dtype
=
torch
.
long
,
device
=
pred
.
device
)
inds
=
torch
.
arange
(
0
,
num_rois
,
dtype
=
torch
.
long
,
device
=
pred
.
device
)
pred_slice
=
pred
[
inds
,
label
].
squeeze
(
1
)
pred_slice
=
pred
[
inds
,
label
].
squeeze
(
1
)
return
F
.
binary_cross_entropy_with_logits
(
return
F
.
binary_cross_entropy_with_logits
(
pred_slice
,
target
,
reduction
=
'
elementwise_
mean'
)[
None
]
pred_slice
,
target
,
reduction
=
'mean'
)[
None
]
def
smooth_l1_loss
(
pred
,
target
,
beta
=
1.0
,
reduction
=
'
elementwise_
mean'
):
def
smooth_l1_loss
(
pred
,
target
,
beta
=
1.0
,
reduction
=
'mean'
):
assert
beta
>
0
assert
beta
>
0
assert
pred
.
size
()
==
target
.
size
()
and
target
.
numel
()
>
0
assert
pred
.
size
()
==
target
.
size
()
and
target
.
numel
()
>
0
diff
=
torch
.
abs
(
pred
-
target
)
diff
=
torch
.
abs
(
pred
-
target
)
loss
=
torch
.
where
(
diff
<
beta
,
0.5
*
diff
*
diff
/
beta
,
loss
=
torch
.
where
(
diff
<
beta
,
0.5
*
diff
*
diff
/
beta
,
diff
-
0.5
*
beta
)
diff
-
0.5
*
beta
)
reduction
=
F
.
_Reduction
.
get_enum
(
reduction
)
reduction
_enum
=
F
.
_Reduction
.
get_enum
(
reduction
)
# none: 0,
elementwise_
mean:1, sum: 2
# none: 0, mean:1, sum: 2
if
reduction
==
0
:
if
reduction
_enum
==
0
:
return
loss
return
loss
elif
reduction
==
1
:
elif
reduction
_enum
==
1
:
return
loss
.
sum
()
/
pred
.
numel
()
return
loss
.
sum
()
/
pred
.
numel
()
elif
reduction
==
2
:
elif
reduction
_enum
==
2
:
return
loss
.
sum
()
return
loss
.
sum
()
...
...
mmdet/ops/dcn/src/deform_conv_cuda.cpp
View file @
ba73bcc5
// modify from https://github.com/chengdazhi/Deformable-Convolution-V2-PyTorch/blob/mmdetection/mmdet/ops/dcn/src/deform_conv_cuda.c
// modify from
// https://github.com/chengdazhi/Deformable-Convolution-V2-PyTorch/blob/mmdetection/mmdet/ops/dcn/src/deform_conv_cuda.c
#include <torch/
torch
.h>
#include <torch/
extension
.h>
#include <cmath>
#include <cmath>
#include <vector>
#include <vector>
void
deformable_im2col
(
const
at
::
Tensor
data_im
,
void
deformable_im2col
(
const
at
::
Tensor
data_im
,
const
at
::
Tensor
data_offset
,
const
at
::
Tensor
data_offset
,
const
int
channels
,
const
int
channels
,
const
int
height
,
const
int
width
,
const
int
height
,
const
int
width
,
const
int
ksize_h
,
const
int
ksize_h
,
const
int
ksize_w
,
const
int
pad_h
,
const
int
ksize_w
,
const
int
pad_h
,
const
int
pad_w
,
const
int
pad_w
,
const
int
stride_h
,
const
int
stride_w
,
const
int
stride_h
,
const
int
stride_w
,
const
int
dilation_h
,
const
int
dilation_w
,
const
int
dilation_h
,
const
int
dilation_w
,
const
int
parallel_imgs
,
const
int
parallel_imgs
,
const
int
deformable_group
,
const
int
deformable_group
,
at
::
Tensor
data_col
);
at
::
Tensor
data_col
);
void
deformable_col2im
(
const
at
::
Tensor
data_col
,
const
at
::
Tensor
data_offset
,
const
int
channels
,
const
int
height
,
const
int
width
,
const
int
ksize_h
,
const
int
ksize_w
,
const
int
pad_h
,
const
int
pad_w
,
const
int
stride_h
,
const
int
stride_w
,
const
int
dilation_h
,
const
int
dilation_w
,
const
int
parallel_imgs
,
const
int
deformable_group
,
at
::
Tensor
grad_im
);
void
deformable_col2im_coord
(
const
at
::
Tensor
data_col
,
const
at
::
Tensor
data_im
,
const
at
::
Tensor
data_offset
,
const
int
channels
,
const
int
height
,
const
int
width
,
const
int
ksize_h
,
const
int
ksize_w
,
const
int
pad_h
,
const
int
pad_w
,
const
int
stride_h
,
const
int
stride_w
,
const
int
dilation_h
,
const
int
dilation_w
,
const
int
parallel_imgs
,
const
int
deformable_group
,
at
::
Tensor
grad_offset
);
void
modulated_deformable_im2col_cuda
(
const
at
::
Tensor
data_im
,
const
at
::
Tensor
data_offset
,
const
at
::
Tensor
data_mask
,
const
int
batch_size
,
const
int
channels
,
const
int
height_im
,
const
int
width_im
,
const
int
height_col
,
const
int
width_col
,
const
int
kernel_h
,
const
int
kenerl_w
,
const
int
pad_h
,
const
int
pad_w
,
const
int
stride_h
,
const
int
stride_w
,
const
int
dilation_h
,
const
int
dilation_w
,
const
int
deformable_group
,
at
::
Tensor
data_col
);
void
modulated_deformable_col2im_cuda
(
const
at
::
Tensor
data_col
,
const
at
::
Tensor
data_offset
,
const
at
::
Tensor
data_mask
,
const
int
batch_size
,
const
int
channels
,
const
int
height_im
,
const
int
width_im
,
const
int
height_col
,
const
int
width_col
,
const
int
kernel_h
,
const
int
kenerl_w
,
const
int
pad_h
,
const
int
pad_w
,
const
int
stride_h
,
const
int
stride_w
,
const
int
dilation_h
,
const
int
dilation_w
,
const
int
deformable_group
,
at
::
Tensor
grad_im
);
void
modulated_deformable_col2im_coord_cuda
(
const
at
::
Tensor
data_col
,
const
at
::
Tensor
data_im
,
const
at
::
Tensor
data_offset
,
const
at
::
Tensor
data_mask
,
const
int
batch_size
,
const
int
channels
,
const
int
height_im
,
const
int
width_im
,
const
int
height_col
,
const
int
width_col
,
const
int
kernel_h
,
const
int
kenerl_w
,
const
int
pad_h
,
const
int
pad_w
,
const
int
stride_h
,
const
int
stride_w
,
const
int
dilation_h
,
const
int
dilation_w
,
const
int
deformable_group
,
at
::
Tensor
grad_offset
,
at
::
Tensor
grad_mask
);
void
shape_check
(
at
::
Tensor
input
,
at
::
Tensor
offset
,
at
::
Tensor
*
gradOutput
,
at
::
Tensor
weight
,
int
kH
,
int
kW
,
int
dH
,
int
dW
,
int
padH
,
int
padW
,
int
dilationH
,
int
dilationW
,
int
group
,
int
deformable_group
)
{
AT_CHECK
(
weight
.
ndimension
()
==
4
,
"4D weight tensor (nOutputPlane,nInputPlane,kH,kW) expected, "
"but got: %s"
,
weight
.
ndimension
());
AT_CHECK
(
weight
.
is_contiguous
(),
"weight tensor has to be contiguous"
);
AT_CHECK
(
kW
>
0
&&
kH
>
0
,
"kernel size should be greater than zero, but got kH: %d kW: %d"
,
kH
,
kW
);
AT_CHECK
((
weight
.
size
(
2
)
==
kH
&&
weight
.
size
(
3
)
==
kW
),
"kernel size should be consistent with weight, "
,
"but got kH: %d kW: %d weight.size(2): %d, weight.size(3): %d"
,
kH
,
kW
,
weight
.
size
(
2
),
weight
.
size
(
3
));
AT_CHECK
(
dW
>
0
&&
dH
>
0
,
"stride should be greater than zero, but got dH: %d dW: %d"
,
dH
,
dW
);
AT_CHECK
(
dilationW
>
0
&&
dilationH
>
0
,
"dilation should be greater than 0, but got dilationH: %d dilationW: %d"
,
dilationH
,
dilationW
);
int
ndim
=
input
.
ndimension
();
int
dimf
=
0
;
int
dimh
=
1
;
int
dimw
=
2
;
if
(
ndim
==
4
)
{
dimf
++
;
dimh
++
;
dimw
++
;
}
AT_CHECK
(
ndim
==
3
||
ndim
==
4
,
void
deformable_col2im
(
const
at
::
Tensor
data_col
,
const
at
::
Tensor
data_offset
,
"3D or 4D input tensor expected but got: %s"
,
ndim
);
const
int
channels
,
const
int
height
,
const
int
width
,
const
int
ksize_h
,
const
int
ksize_w
,
const
int
pad_h
,
long
nInputPlane
=
weight
.
size
(
1
)
*
group
;
const
int
pad_w
,
const
int
stride_h
,
const
int
stride_w
,
long
inputHeight
=
input
.
size
(
dimh
);
const
int
dilation_h
,
const
int
dilation_w
,
long
inputWidth
=
input
.
size
(
dimw
);
const
int
parallel_imgs
,
const
int
deformable_group
,
long
nOutputPlane
=
weight
.
size
(
0
);
at
::
Tensor
grad_im
);
long
outputHeight
=
(
inputHeight
+
2
*
padH
-
(
dilationH
*
(
kH
-
1
)
+
1
))
/
dH
+
1
;
long
outputWidth
=
(
inputWidth
+
2
*
padW
-
(
dilationW
*
(
kW
-
1
)
+
1
))
/
dW
+
1
;
void
deformable_col2im_coord
(
const
at
::
Tensor
data_col
,
const
at
::
Tensor
data_im
,
AT_CHECK
(
nInputPlane
%
deformable_group
==
0
,
const
at
::
Tensor
data_offset
,
const
int
channels
,
const
int
height
,
"input channels must divide deformable group size"
);
const
int
width
,
const
int
ksize_h
,
const
int
ksize_w
,
const
int
pad_h
,
const
int
pad_w
,
const
int
stride_h
,
const
int
stride_w
,
if
(
outputWidth
<
1
||
outputHeight
<
1
)
const
int
dilation_h
,
const
int
dilation_w
,
const
int
parallel_imgs
,
AT_ERROR
(
const
int
deformable_group
,
at
::
Tensor
grad_offset
);
"Given input size: (%ld x %ld x %ld). "
"Calculated output size: (%ld x %ld x %ld). Output size is too small"
,
void
modulated_deformable_im2col_cuda
(
nInputPlane
,
inputHeight
,
inputWidth
,
nOutputPlane
,
outputHeight
,
const
at
::
Tensor
data_im
,
const
at
::
Tensor
data_offset
,
outputWidth
);
const
at
::
Tensor
data_mask
,
const
int
batch_size
,
const
int
channels
,
const
int
height_im
,
const
int
width_im
,
const
int
height_col
,
AT_CHECK
(
input
.
size
(
1
)
==
nInputPlane
,
const
int
width_col
,
const
int
kernel_h
,
const
int
kenerl_w
,
"invalid number of input planes, expected: %d, but got: %d"
,
const
int
pad_h
,
const
int
pad_w
,
const
int
stride_h
,
const
int
stride_w
,
nInputPlane
,
input
.
size
(
1
));
const
int
dilation_h
,
const
int
dilation_w
,
const
int
deformable_group
,
at
::
Tensor
data_col
);
AT_CHECK
((
inputHeight
>=
kH
&&
inputWidth
>=
kW
),
"input image is smaller than kernel"
);
void
modulated_deformable_col2im_cuda
(
const
at
::
Tensor
data_col
,
const
at
::
Tensor
data_offset
,
AT_CHECK
(
const
at
::
Tensor
data_mask
,
const
int
batch_size
,
const
int
channels
,
(
offset
.
size
(
2
)
==
outputHeight
&&
offset
.
size
(
3
)
==
outputWidth
),
const
int
height_im
,
const
int
width_im
,
const
int
height_col
,
"invalid spatial size of offset, expected height: %d width: %d, but got height: %d width: %d"
,
const
int
width_col
,
const
int
kernel_h
,
const
int
kenerl_w
,
outputHeight
,
outputWidth
,
offset
.
size
(
2
),
offset
.
size
(
3
));
const
int
pad_h
,
const
int
pad_w
,
const
int
stride_h
,
const
int
stride_w
,
const
int
dilation_h
,
const
int
dilation_w
,
const
int
deformable_group
,
AT_CHECK
((
offset
.
size
(
1
)
==
deformable_group
*
2
*
kH
*
kW
),
at
::
Tensor
grad_im
);
"invalid number of channels of offset"
);
void
modulated_deformable_col2im_coord_cuda
(
if
(
gradOutput
!=
NULL
)
const
at
::
Tensor
data_col
,
const
at
::
Tensor
data_im
,
{
const
at
::
Tensor
data_offset
,
const
at
::
Tensor
data_mask
,
AT_CHECK
(
gradOutput
->
size
(
dimf
)
==
nOutputPlane
,
const
int
batch_size
,
const
int
channels
,
const
int
height_im
,
"invalid number of gradOutput planes, expected: %d, but got: %d"
,
const
int
width_im
,
const
int
height_col
,
const
int
width_col
,
nOutputPlane
,
gradOutput
->
size
(
dimf
));
const
int
kernel_h
,
const
int
kenerl_w
,
const
int
pad_h
,
const
int
pad_w
,
const
int
stride_h
,
const
int
stride_w
,
const
int
dilation_h
,
AT_CHECK
((
gradOutput
->
size
(
dimh
)
==
outputHeight
&&
const
int
dilation_w
,
const
int
deformable_group
,
at
::
Tensor
grad_offset
,
gradOutput
->
size
(
dimw
)
==
outputWidth
),
at
::
Tensor
grad_mask
);
"invalid size of gradOutput, expected height: %d width: %d , but got height: %d width: %d"
,
outputHeight
,
outputWidth
,
gradOutput
->
size
(
dimh
),
gradOutput
->
size
(
dimw
));
void
shape_check
(
at
::
Tensor
input
,
at
::
Tensor
offset
,
at
::
Tensor
*
gradOutput
,
}
at
::
Tensor
weight
,
int
kH
,
int
kW
,
int
dH
,
int
dW
,
int
padH
,
int
padW
,
int
dilationH
,
int
dilationW
,
int
group
,
int
deformable_group
)
{
AT_CHECK
(
weight
.
ndimension
()
==
4
,
"4D weight tensor (nOutputPlane,nInputPlane,kH,kW) expected, "
"but got: %s"
,
weight
.
ndimension
());
AT_CHECK
(
weight
.
is_contiguous
(),
"weight tensor has to be contiguous"
);
AT_CHECK
(
kW
>
0
&&
kH
>
0
,
"kernel size should be greater than zero, but got kH: %d kW: %d"
,
kH
,
kW
);
AT_CHECK
((
weight
.
size
(
2
)
==
kH
&&
weight
.
size
(
3
)
==
kW
),
"kernel size should be consistent with weight, "
,
"but got kH: %d kW: %d weight.size(2): %d, weight.size(3): %d"
,
kH
,
kW
,
weight
.
size
(
2
),
weight
.
size
(
3
));
AT_CHECK
(
dW
>
0
&&
dH
>
0
,
"stride should be greater than zero, but got dH: %d dW: %d"
,
dH
,
dW
);
AT_CHECK
(
dilationW
>
0
&&
dilationH
>
0
,
"dilation should be greater than 0, but got dilationH: %d dilationW: %d"
,
dilationH
,
dilationW
);
int
ndim
=
input
.
ndimension
();
int
dimf
=
0
;
int
dimh
=
1
;
int
dimw
=
2
;
if
(
ndim
==
4
)
{
dimf
++
;
dimh
++
;
dimw
++
;
}
AT_CHECK
(
ndim
==
3
||
ndim
==
4
,
"3D or 4D input tensor expected but got: %s"
,
ndim
);
long
nInputPlane
=
weight
.
size
(
1
)
*
group
;
long
inputHeight
=
input
.
size
(
dimh
);
long
inputWidth
=
input
.
size
(
dimw
);
long
nOutputPlane
=
weight
.
size
(
0
);
long
outputHeight
=
(
inputHeight
+
2
*
padH
-
(
dilationH
*
(
kH
-
1
)
+
1
))
/
dH
+
1
;
long
outputWidth
=
(
inputWidth
+
2
*
padW
-
(
dilationW
*
(
kW
-
1
)
+
1
))
/
dW
+
1
;
AT_CHECK
(
nInputPlane
%
deformable_group
==
0
,
"input channels must divide deformable group size"
);
if
(
outputWidth
<
1
||
outputHeight
<
1
)
AT_ERROR
(
"Given input size: (%ld x %ld x %ld). "
"Calculated output size: (%ld x %ld x %ld). Output size is too small"
,
nInputPlane
,
inputHeight
,
inputWidth
,
nOutputPlane
,
outputHeight
,
outputWidth
);
AT_CHECK
(
input
.
size
(
1
)
==
nInputPlane
,
"invalid number of input planes, expected: %d, but got: %d"
,
nInputPlane
,
input
.
size
(
1
));
AT_CHECK
((
inputHeight
>=
kH
&&
inputWidth
>=
kW
),
"input image is smaller than kernel"
);
AT_CHECK
((
offset
.
size
(
2
)
==
outputHeight
&&
offset
.
size
(
3
)
==
outputWidth
),
"invalid spatial size of offset, expected height: %d width: %d, but "
"got height: %d width: %d"
,
outputHeight
,
outputWidth
,
offset
.
size
(
2
),
offset
.
size
(
3
));
AT_CHECK
((
offset
.
size
(
1
)
==
deformable_group
*
2
*
kH
*
kW
),
"invalid number of channels of offset"
);
if
(
gradOutput
!=
NULL
)
{
AT_CHECK
(
gradOutput
->
size
(
dimf
)
==
nOutputPlane
,
"invalid number of gradOutput planes, expected: %d, but got: %d"
,
nOutputPlane
,
gradOutput
->
size
(
dimf
));
AT_CHECK
((
gradOutput
->
size
(
dimh
)
==
outputHeight
&&
gradOutput
->
size
(
dimw
)
==
outputWidth
),
"invalid size of gradOutput, expected height: %d width: %d , but "
"got height: %d width: %d"
,
outputHeight
,
outputWidth
,
gradOutput
->
size
(
dimh
),
gradOutput
->
size
(
dimw
));
}
}
}
int
deform_conv_forward_cuda
(
at
::
Tensor
input
,
at
::
Tensor
weight
,
int
deform_conv_forward_cuda
(
at
::
Tensor
input
,
at
::
Tensor
weight
,
...
@@ -155,480 +153,543 @@ int deform_conv_forward_cuda(at::Tensor input, at::Tensor weight,
...
@@ -155,480 +153,543 @@ int deform_conv_forward_cuda(at::Tensor input, at::Tensor weight,
at
::
Tensor
columns
,
at
::
Tensor
ones
,
int
kW
,
at
::
Tensor
columns
,
at
::
Tensor
ones
,
int
kW
,
int
kH
,
int
dW
,
int
dH
,
int
padW
,
int
padH
,
int
kH
,
int
dW
,
int
dH
,
int
padW
,
int
padH
,
int
dilationW
,
int
dilationH
,
int
group
,
int
dilationW
,
int
dilationH
,
int
group
,
int
deformable_group
,
int
im2col_step
)
int
deformable_group
,
int
im2col_step
)
{
{
// todo: resize columns to include im2col: done
// todo: add im2col_step as input
// todo: resize columns to include im2col: done
// todo: add new output buffer and transpose it to output (or directly
// todo: add im2col_step as input
// transpose output) todo: possibly change data indexing because of
// todo: add new output buffer and transpose it to output (or directly transpose output)
// parallel_imgs
// todo: possibly change data indexing because of parallel_imgs
shape_check
(
input
,
offset
,
NULL
,
weight
,
kH
,
kW
,
dH
,
dW
,
padH
,
padW
,
shape_check
(
input
,
offset
,
NULL
,
weight
,
kH
,
kW
,
dH
,
dW
,
padH
,
padW
,
dilationH
,
dilationW
,
group
,
deformable_group
);
dilationH
,
dilationW
,
group
,
deformable_group
);
input
=
input
.
contiguous
();
input
=
input
.
contiguous
();
offset
=
offset
.
contiguous
();
offset
=
offset
.
contiguous
();
weight
=
weight
.
contiguous
();
weight
=
weight
.
contiguous
();
int
batch
=
1
;
int
batch
=
1
;
if
(
input
.
ndimension
()
==
3
)
{
if
(
input
.
ndimension
()
==
3
)
// Force batch
{
batch
=
0
;
// Force batch
input
.
unsqueeze_
(
0
);
batch
=
0
;
offset
.
unsqueeze_
(
0
);
input
.
unsqueeze_
(
0
);
}
offset
.
unsqueeze_
(
0
);
}
// todo: assert batchsize dividable by im2col_step
// todo: assert batchsize dividable by im2col_step
long
batchSize
=
input
.
size
(
0
);
long
nInputPlane
=
input
.
size
(
1
);
long
batchSize
=
input
.
size
(
0
);
long
inputHeight
=
input
.
size
(
2
);
long
nInputPlane
=
input
.
size
(
1
);
long
inputWidth
=
input
.
size
(
3
);
long
inputHeight
=
input
.
size
(
2
);
long
inputWidth
=
input
.
size
(
3
);
long
nOutputPlane
=
weight
.
size
(
0
);
long
nOutputPlane
=
weight
.
size
(
0
);
long
outputWidth
=
(
inputWidth
+
2
*
padW
-
(
dilationW
*
(
kW
-
1
)
+
1
))
/
dW
+
1
;
long
outputWidth
=
(
inputWidth
+
2
*
padW
-
(
dilationW
*
(
kW
-
1
)
+
1
))
/
dW
+
1
;
long
outputHeight
=
long
outputHeight
=
(
inputHeight
+
2
*
padH
-
(
dilationH
*
(
kH
-
1
)
+
1
))
/
dH
+
1
;
(
inputHeight
+
2
*
padH
-
(
dilationH
*
(
kH
-
1
)
+
1
))
/
dH
+
1
;
AT_CHECK
((
offset
.
size
(
0
)
==
batchSize
),
"invalid batch size of offset"
);
AT_CHECK
((
offset
.
size
(
0
)
==
batchSize
),
"invalid batch size of offset"
);
output
=
output
.
view
({
batchSize
/
im2col_step
,
im2col_step
,
nOutputPlane
,
outputHeight
,
outputWidth
});
output
=
output
.
view
({
batchSize
/
im2col_step
,
im2col_step
,
nOutputPlane
,
columns
=
at
::
zeros
({
nInputPlane
*
kW
*
kH
,
im2col_step
*
outputHeight
*
outputWidth
},
input
.
type
());
outputHeight
,
outputWidth
});
columns
=
at
::
zeros
(
if
(
ones
.
ndimension
()
!=
2
||
ones
.
size
(
0
)
*
ones
.
size
(
1
)
<
outputHeight
*
outputWidth
)
{
nInputPlane
*
kW
*
kH
,
im2col_step
*
outputHeight
*
outputWidth
},
{
input
.
type
());
ones
=
at
::
ones
({
outputHeight
,
outputWidth
},
input
.
type
());
if
(
ones
.
ndimension
()
!=
2
||
ones
.
size
(
0
)
*
ones
.
size
(
1
)
<
outputHeight
*
outputWidth
)
{
ones
=
at
::
ones
({
outputHeight
,
outputWidth
},
input
.
type
());
}
input
=
input
.
view
({
batchSize
/
im2col_step
,
im2col_step
,
nInputPlane
,
inputHeight
,
inputWidth
});
offset
=
offset
.
view
({
batchSize
/
im2col_step
,
im2col_step
,
deformable_group
*
2
*
kH
*
kW
,
outputHeight
,
outputWidth
});
at
::
Tensor
output_buffer
=
at
::
zeros
({
batchSize
/
im2col_step
,
nOutputPlane
,
im2col_step
*
outputHeight
,
outputWidth
},
output
.
type
());
output_buffer
=
output_buffer
.
view
(
{
output_buffer
.
size
(
0
),
group
,
output_buffer
.
size
(
1
)
/
group
,
output_buffer
.
size
(
2
),
output_buffer
.
size
(
3
)});
for
(
int
elt
=
0
;
elt
<
batchSize
/
im2col_step
;
elt
++
)
{
deformable_im2col
(
input
[
elt
],
offset
[
elt
],
nInputPlane
,
inputHeight
,
inputWidth
,
kH
,
kW
,
padH
,
padW
,
dH
,
dW
,
dilationH
,
dilationW
,
im2col_step
,
deformable_group
,
columns
);
columns
=
columns
.
view
({
group
,
columns
.
size
(
0
)
/
group
,
columns
.
size
(
1
)});
weight
=
weight
.
view
({
group
,
weight
.
size
(
0
)
/
group
,
weight
.
size
(
1
),
weight
.
size
(
2
),
weight
.
size
(
3
)});
for
(
int
g
=
0
;
g
<
group
;
g
++
)
{
output_buffer
[
elt
][
g
]
=
output_buffer
[
elt
][
g
]
.
flatten
(
1
)
.
addmm_
(
weight
[
g
].
flatten
(
1
),
columns
[
g
])
.
view_as
(
output_buffer
[
elt
][
g
]);
}
}
}
input
=
input
.
view
({
batchSize
/
im2col_step
,
im2col_step
,
nInputPlane
,
inputHeight
,
inputWidth
});
output_buffer
=
output_buffer
.
view
(
offset
=
offset
.
view
({
batchSize
/
im2col_step
,
im2col_step
,
{
output_buffer
.
size
(
0
),
output_buffer
.
size
(
1
)
*
output_buffer
.
size
(
2
),
deformable_group
*
2
*
kH
*
kW
,
outputHeight
,
outputWidth
});
output_buffer
.
size
(
3
),
output_buffer
.
size
(
4
)});
at
::
Tensor
output_buffer
=
at
::
zeros
({
batchSize
/
im2col_step
,
nOutputPlane
,
im2col_step
*
outputHeight
,
outputWidth
},
output
.
type
());
output_buffer
=
output_buffer
.
view
({
output_buffer
.
size
(
0
),
group
,
output_buffer
.
size
(
1
)
/
group
,
output_buffer
.
size
(
2
),
output_buffer
.
size
(
3
)});
output_buffer
=
output_buffer
.
view
({
batchSize
/
im2col_step
,
nOutputPlane
,
im2col_step
,
outputHeight
,
outputWidth
});
output_buffer
.
transpose_
(
1
,
2
);
output
.
copy_
(
output_buffer
);
output
=
output
.
view
({
batchSize
,
nOutputPlane
,
outputHeight
,
outputWidth
});
for
(
int
elt
=
0
;
elt
<
batchSize
/
im2col_step
;
elt
++
)
input
=
input
.
view
({
batchSize
,
nInputPlane
,
inputHeight
,
inputWidth
});
{
offset
=
offset
.
view
(
deformable_im2col
(
{
batchSize
,
deformable_group
*
2
*
kH
*
kW
,
outputHeight
,
outputWidth
});
input
[
elt
],
offset
[
elt
],
nInputPlane
,
inputHeight
,
inputWidth
,
kH
,
kW
,
padH
,
padW
,
dH
,
dW
,
dilationH
,
dilationW
,
im2col_step
,
deformable_group
,
columns
);
columns
=
columns
.
view
({
group
,
columns
.
size
(
0
)
/
group
,
columns
.
size
(
1
)});
if
(
batch
==
0
)
{
weight
=
weight
.
view
({
group
,
weight
.
size
(
0
)
/
group
,
weight
.
size
(
1
),
weight
.
size
(
2
),
weight
.
size
(
3
)});
output
=
output
.
view
({
nOutputPlane
,
outputHeight
,
outputWidth
});
input
=
input
.
view
({
nInputPlane
,
inputHeight
,
inputWidth
});
offset
=
offset
.
view
({
offset
.
size
(
1
),
offset
.
size
(
2
),
offset
.
size
(
3
)});
}
for
(
int
g
=
0
;
g
<
group
;
g
++
){
return
1
;
output_buffer
[
elt
][
g
]
=
output_buffer
[
elt
][
g
].
flatten
(
1
).
addmm_
(
weight
[
g
].
flatten
(
1
),
columns
[
g
]).
view_as
(
output_buffer
[
elt
][
g
]);
}
}
output_buffer
=
output_buffer
.
view
({
output_buffer
.
size
(
0
),
output_buffer
.
size
(
1
)
*
output_buffer
.
size
(
2
),
output_buffer
.
size
(
3
),
output_buffer
.
size
(
4
)});
output_buffer
=
output_buffer
.
view
(
{
batchSize
/
im2col_step
,
nOutputPlane
,
im2col_step
,
outputHeight
,
outputWidth
});
output_buffer
.
transpose_
(
1
,
2
);
output
.
copy_
(
output_buffer
);
output
=
output
.
view
({
batchSize
,
nOutputPlane
,
outputHeight
,
outputWidth
});
input
=
input
.
view
({
batchSize
,
nInputPlane
,
inputHeight
,
inputWidth
});
offset
=
offset
.
view
({
batchSize
,
deformable_group
*
2
*
kH
*
kW
,
outputHeight
,
outputWidth
});
if
(
batch
==
0
)
{
output
=
output
.
view
({
nOutputPlane
,
outputHeight
,
outputWidth
});
input
=
input
.
view
({
nInputPlane
,
inputHeight
,
inputWidth
});
offset
=
offset
.
view
({
offset
.
size
(
1
),
offset
.
size
(
2
),
offset
.
size
(
3
)});
}
return
1
;
}
}
int
deform_conv_backward_input_cuda
(
int
deform_conv_backward_input_cuda
(
at
::
Tensor
input
,
at
::
Tensor
offset
,
at
::
Tensor
input
,
at
::
Tensor
offset
,
at
::
Tensor
gradOutput
,
at
::
Tensor
gradOutput
,
at
::
Tensor
gradInput
,
at
::
Tensor
gradInput
,
at
::
Tensor
gradOffset
,
at
::
Tensor
weight
,
at
::
Tensor
gradOffset
,
at
::
Tensor
weight
,
at
::
Tensor
columns
,
int
kW
,
int
kH
,
int
dW
,
int
dH
,
int
padW
,
int
padH
,
at
::
Tensor
columns
,
int
kW
,
int
kH
,
int
dW
,
int
dilationW
,
int
dilationH
,
int
group
,
int
deformable_group
,
int
im2col_step
)
int
dH
,
int
padW
,
int
padH
,
int
dilationW
,
{
int
dilationH
,
int
group
,
int
deformable_group
,
int
im2col_step
)
{
shape_check
(
input
,
offset
,
&
gradOutput
,
weight
,
kH
,
kW
,
dH
,
dW
,
padH
,
shape_check
(
input
,
offset
,
&
gradOutput
,
weight
,
kH
,
kW
,
dH
,
dW
,
padH
,
padW
,
padW
,
dilationH
,
dilationW
,
group
,
deformable_group
);
dilationH
,
dilationW
,
group
,
deformable_group
);
input
=
input
.
contiguous
();
input
=
input
.
contiguous
();
offset
=
offset
.
contiguous
();
offset
=
offset
.
contiguous
();
gradOutput
=
gradOutput
.
contiguous
();
gradOutput
=
gradOutput
.
contiguous
();
weight
=
weight
.
contiguous
();
weight
=
weight
.
contiguous
();
int
batch
=
1
;
int
batch
=
1
;
if
(
input
.
ndimension
()
==
3
)
if
(
input
.
ndimension
()
==
3
)
{
{
// Force batch
// Force batch
batch
=
0
;
batch
=
0
;
input
=
input
.
view
({
1
,
input
.
size
(
0
),
input
.
size
(
1
),
input
.
size
(
2
)});
input
=
input
.
view
({
1
,
input
.
size
(
0
),
input
.
size
(
1
),
input
.
size
(
2
)});
offset
=
offset
.
view
({
1
,
offset
.
size
(
0
),
offset
.
size
(
1
),
offset
.
size
(
2
)});
offset
=
offset
.
view
({
1
,
offset
.
size
(
0
),
offset
.
size
(
1
),
offset
.
size
(
2
)});
gradOutput
=
gradOutput
.
view
({
1
,
gradOutput
.
size
(
0
),
gradOutput
.
size
(
1
),
gradOutput
.
size
(
2
)});
}
long
batchSize
=
input
.
size
(
0
);
long
nInputPlane
=
input
.
size
(
1
);
long
inputHeight
=
input
.
size
(
2
);
long
inputWidth
=
input
.
size
(
3
);
long
nOutputPlane
=
weight
.
size
(
0
);
long
outputWidth
=
(
inputWidth
+
2
*
padW
-
(
dilationW
*
(
kW
-
1
)
+
1
))
/
dW
+
1
;
long
outputHeight
=
(
inputHeight
+
2
*
padH
-
(
dilationH
*
(
kH
-
1
)
+
1
))
/
dH
+
1
;
AT_CHECK
((
offset
.
size
(
0
)
==
batchSize
),
3
,
"invalid batch size of offset"
);
gradInput
=
gradInput
.
view
({
batchSize
,
nInputPlane
,
inputHeight
,
inputWidth
});
columns
=
at
::
zeros
({
nInputPlane
*
kW
*
kH
,
im2col_step
*
outputHeight
*
outputWidth
},
input
.
type
());
// change order of grad output
gradOutput
=
gradOutput
.
view
(
gradOutput
=
gradOutput
.
view
(
{
batchSize
/
im2col_step
,
im2col_step
,
nOutputPlane
,
outputHeight
,
outputWidth
});
{
1
,
gradOutput
.
size
(
0
),
gradOutput
.
size
(
1
),
gradOutput
.
size
(
2
)});
gradOutput
.
transpose_
(
1
,
2
);
}
gradInput
=
gradInput
.
view
(
long
batchSize
=
input
.
size
(
0
);
{
batchSize
/
im2col_step
,
im2col_step
,
nInputPlane
,
inputHeight
,
inputWidth
});
long
nInputPlane
=
input
.
size
(
1
);
input
=
input
.
view
({
batchSize
/
im2col_step
,
im2col_step
,
nInputPlane
,
inputHeight
,
inputWidth
});
long
inputHeight
=
input
.
size
(
2
);
gradOffset
=
gradOffset
.
view
({
batchSize
/
im2col_step
,
im2col_step
,
long
inputWidth
=
input
.
size
(
3
);
deformable_group
*
2
*
kH
*
kW
,
outputHeight
,
outputWidth
});
offset
=
offset
.
view
({
batchSize
/
im2col_step
,
im2col_step
,
long
nOutputPlane
=
weight
.
size
(
0
);
deformable_group
*
2
*
kH
*
kW
,
outputHeight
,
outputWidth
});
long
outputWidth
=
for
(
int
elt
=
0
;
elt
<
batchSize
/
im2col_step
;
elt
++
)
(
inputWidth
+
2
*
padW
-
(
dilationW
*
(
kW
-
1
)
+
1
))
/
dW
+
1
;
{
long
outputHeight
=
// divide into groups
(
inputHeight
+
2
*
padH
-
(
dilationH
*
(
kH
-
1
)
+
1
))
/
dH
+
1
;
columns
=
columns
.
view
({
group
,
columns
.
size
(
0
)
/
group
,
columns
.
size
(
1
)});
weight
=
weight
.
view
({
group
,
weight
.
size
(
0
)
/
group
,
weight
.
size
(
1
),
weight
.
size
(
2
),
weight
.
size
(
3
)});
AT_CHECK
((
offset
.
size
(
0
)
==
batchSize
),
3
,
"invalid batch size of offset"
);
gradOutput
=
gradOutput
.
view
({
gradOutput
.
size
(
0
),
group
,
gradOutput
.
size
(
1
)
/
group
,
gradOutput
.
size
(
2
),
gradOutput
.
size
(
3
),
gradOutput
.
size
(
4
)});
gradInput
=
gradInput
.
view
({
batchSize
,
nInputPlane
,
inputHeight
,
inputWidth
});
columns
=
at
::
zeros
(
for
(
int
g
=
0
;
g
<
group
;
g
++
){
{
nInputPlane
*
kW
*
kH
,
im2col_step
*
outputHeight
*
outputWidth
},
columns
[
g
]
=
columns
[
g
].
addmm_
(
weight
[
g
].
flatten
(
1
).
transpose
(
0
,
1
),
gradOutput
[
elt
][
g
].
flatten
(
1
),
0.0
f
,
1.0
f
);
input
.
type
());
}
// change order of grad output
columns
=
columns
.
view
({
columns
.
size
(
0
)
*
columns
.
size
(
1
),
columns
.
size
(
2
)});
gradOutput
=
gradOutput
.
view
({
batchSize
/
im2col_step
,
im2col_step
,
gradOutput
=
gradOutput
.
view
({
gradOutput
.
size
(
0
),
gradOutput
.
size
(
1
)
*
gradOutput
.
size
(
2
),
gradOutput
.
size
(
3
),
gradOutput
.
size
(
4
),
gradOutput
.
size
(
5
)});
nOutputPlane
,
outputHeight
,
outputWidth
});
gradOutput
.
transpose_
(
1
,
2
);
deformable_col2im_coord
(
columns
,
input
[
elt
],
offset
[
elt
],
gradInput
=
gradInput
.
view
({
batchSize
/
im2col_step
,
im2col_step
,
nInputPlane
,
nInputPlane
,
inputHeight
,
inputWidth
,
kH
,
kW
,
padH
,
padW
,
dH
,
dW
,
inputHeight
,
inputWidth
});
dilationH
,
dilationW
,
im2col_step
,
deformable_group
,
gradOffset
[
elt
]);
input
=
input
.
view
({
batchSize
/
im2col_step
,
im2col_step
,
nInputPlane
,
inputHeight
,
inputWidth
});
deformable_col2im
(
gradOffset
=
gradOffset
.
view
({
batchSize
/
im2col_step
,
im2col_step
,
columns
,
offset
[
elt
],
nInputPlane
,
inputHeight
,
deformable_group
*
2
*
kH
*
kW
,
outputHeight
,
inputWidth
,
kH
,
kW
,
padH
,
padW
,
dH
,
dW
,
dilationH
,
dilationW
,
im2col_step
,
outputWidth
});
deformable_group
,
gradInput
[
elt
]);
offset
=
}
offset
.
view
({
batchSize
/
im2col_step
,
im2col_step
,
deformable_group
*
2
*
kH
*
kW
,
outputHeight
,
outputWidth
});
for
(
int
elt
=
0
;
elt
<
batchSize
/
im2col_step
;
elt
++
)
{
// divide into groups
columns
=
columns
.
view
({
group
,
columns
.
size
(
0
)
/
group
,
columns
.
size
(
1
)});
weight
=
weight
.
view
({
group
,
weight
.
size
(
0
)
/
group
,
weight
.
size
(
1
),
weight
.
size
(
2
),
weight
.
size
(
3
)});
gradOutput
=
gradOutput
.
view
(
{
gradOutput
.
size
(
0
),
group
,
gradOutput
.
size
(
1
)
/
group
,
gradOutput
.
size
(
2
),
gradOutput
.
size
(
3
),
gradOutput
.
size
(
4
)});
gradOutput
.
transpose_
(
1
,
2
);
for
(
int
g
=
0
;
g
<
group
;
g
++
)
{
gradOutput
=
gradOutput
.
view
({
batchSize
,
nOutputPlane
,
outputHeight
,
outputWidth
});
columns
[
g
]
=
columns
[
g
].
addmm_
(
weight
[
g
].
flatten
(
1
).
transpose
(
0
,
1
),
gradOutput
[
elt
][
g
].
flatten
(
1
),
0.0
f
,
1.0
f
);
gradInput
=
gradInput
.
view
({
batchSize
,
nInputPlane
,
inputHeight
,
inputWidth
});
input
=
input
.
view
({
batchSize
,
nInputPlane
,
inputHeight
,
inputWidth
});
gradOffset
=
gradOffset
.
view
({
batchSize
,
deformable_group
*
2
*
kH
*
kW
,
outputHeight
,
outputWidth
});
offset
=
offset
.
view
({
batchSize
,
deformable_group
*
2
*
kH
*
kW
,
outputHeight
,
outputWidth
});
if
(
batch
==
0
)
{
gradOutput
=
gradOutput
.
view
({
nOutputPlane
,
outputHeight
,
outputWidth
});
input
=
input
.
view
({
nInputPlane
,
inputHeight
,
inputWidth
});
gradInput
=
gradInput
.
view
({
nInputPlane
,
inputHeight
,
inputWidth
});
offset
=
offset
.
view
({
offset
.
size
(
1
),
offset
.
size
(
2
),
offset
.
size
(
3
)});
gradOffset
=
gradOffset
.
view
({
offset
.
size
(
1
),
offset
.
size
(
2
),
offset
.
size
(
3
)});
}
}
return
1
;
columns
=
columns
.
view
({
columns
.
size
(
0
)
*
columns
.
size
(
1
),
columns
.
size
(
2
)});
gradOutput
=
gradOutput
.
view
(
{
gradOutput
.
size
(
0
),
gradOutput
.
size
(
1
)
*
gradOutput
.
size
(
2
),
gradOutput
.
size
(
3
),
gradOutput
.
size
(
4
),
gradOutput
.
size
(
5
)});
deformable_col2im_coord
(
columns
,
input
[
elt
],
offset
[
elt
],
nInputPlane
,
inputHeight
,
inputWidth
,
kH
,
kW
,
padH
,
padW
,
dH
,
dW
,
dilationH
,
dilationW
,
im2col_step
,
deformable_group
,
gradOffset
[
elt
]);
deformable_col2im
(
columns
,
offset
[
elt
],
nInputPlane
,
inputHeight
,
inputWidth
,
kH
,
kW
,
padH
,
padW
,
dH
,
dW
,
dilationH
,
dilationW
,
im2col_step
,
deformable_group
,
gradInput
[
elt
]);
}
gradOutput
.
transpose_
(
1
,
2
);
gradOutput
=
gradOutput
.
view
({
batchSize
,
nOutputPlane
,
outputHeight
,
outputWidth
});
gradInput
=
gradInput
.
view
({
batchSize
,
nInputPlane
,
inputHeight
,
inputWidth
});
input
=
input
.
view
({
batchSize
,
nInputPlane
,
inputHeight
,
inputWidth
});
gradOffset
=
gradOffset
.
view
(
{
batchSize
,
deformable_group
*
2
*
kH
*
kW
,
outputHeight
,
outputWidth
});
offset
=
offset
.
view
(
{
batchSize
,
deformable_group
*
2
*
kH
*
kW
,
outputHeight
,
outputWidth
});
if
(
batch
==
0
)
{
gradOutput
=
gradOutput
.
view
({
nOutputPlane
,
outputHeight
,
outputWidth
});
input
=
input
.
view
({
nInputPlane
,
inputHeight
,
inputWidth
});
gradInput
=
gradInput
.
view
({
nInputPlane
,
inputHeight
,
inputWidth
});
offset
=
offset
.
view
({
offset
.
size
(
1
),
offset
.
size
(
2
),
offset
.
size
(
3
)});
gradOffset
=
gradOffset
.
view
({
offset
.
size
(
1
),
offset
.
size
(
2
),
offset
.
size
(
3
)});
}
return
1
;
}
}
int
deform_conv_backward_parameters_cuda
(
int
deform_conv_backward_parameters_cuda
(
at
::
Tensor
input
,
at
::
Tensor
offset
,
at
::
Tensor
gradOutput
,
at
::
Tensor
input
,
at
::
Tensor
offset
,
at
::
Tensor
gradOutput
,
at
::
Tensor
gradWeight
,
// at::Tensor gradBias,
at
::
Tensor
gradWeight
,
// at::Tensor gradBias,
at
::
Tensor
columns
,
at
::
Tensor
ones
,
int
kW
,
int
kH
,
int
dW
,
int
dH
,
at
::
Tensor
columns
,
at
::
Tensor
ones
,
int
kW
,
int
kH
,
int
dW
,
int
dH
,
int
padW
,
int
padH
,
int
dilationW
,
int
dilationH
,
int
group
,
int
deformable_group
,
int
padW
,
int
padH
,
int
dilationW
,
int
dilationH
,
int
group
,
float
scale
,
int
im2col_step
)
int
deformable_group
,
float
scale
,
int
im2col_step
)
{
{
// todo: transpose and reshape outGrad
// todo: reshape columns
// todo: transpose and reshape outGrad
// todo: add im2col_step as input
// todo: reshape columns
// todo: add im2col_step as input
shape_check
(
input
,
offset
,
&
gradOutput
,
gradWeight
,
kH
,
kW
,
dH
,
dW
,
padH
,
padW
,
dilationH
,
dilationW
,
group
,
deformable_group
);
shape_check
(
input
,
offset
,
&
gradOutput
,
gradWeight
,
kH
,
kW
,
dH
,
dW
,
padH
,
padW
,
dilationH
,
dilationW
,
group
,
deformable_group
);
input
=
input
.
contiguous
();
offset
=
offset
.
contiguous
();
input
=
input
.
contiguous
();
gradOutput
=
gradOutput
.
contiguous
();
offset
=
offset
.
contiguous
();
gradOutput
=
gradOutput
.
contiguous
();
int
batch
=
1
;
int
batch
=
1
;
if
(
input
.
ndimension
()
==
3
)
{
// Force batch
if
(
input
.
ndimension
()
==
3
)
batch
=
0
;
{
input
=
input
.
view
(
// Force batch
at
::
IntList
({
1
,
input
.
size
(
0
),
input
.
size
(
1
),
input
.
size
(
2
)}));
batch
=
0
;
input
=
input
.
view
(
at
::
IntList
({
1
,
input
.
size
(
0
),
input
.
size
(
1
),
input
.
size
(
2
)}));
gradOutput
=
gradOutput
.
view
({
1
,
gradOutput
.
size
(
0
),
gradOutput
.
size
(
1
),
gradOutput
.
size
(
2
)});
}
long
batchSize
=
input
.
size
(
0
);
long
nInputPlane
=
input
.
size
(
1
);
long
inputHeight
=
input
.
size
(
2
);
long
inputWidth
=
input
.
size
(
3
);
long
nOutputPlane
=
gradWeight
.
size
(
0
);
long
outputWidth
=
(
inputWidth
+
2
*
padW
-
(
dilationW
*
(
kW
-
1
)
+
1
))
/
dW
+
1
;
long
outputHeight
=
(
inputHeight
+
2
*
padH
-
(
dilationH
*
(
kH
-
1
)
+
1
))
/
dH
+
1
;
AT_CHECK
((
offset
.
size
(
0
)
==
batchSize
),
"invalid batch size of offset"
);
columns
=
at
::
zeros
({
nInputPlane
*
kW
*
kH
,
im2col_step
*
outputHeight
*
outputWidth
},
input
.
type
());
gradOutput
=
gradOutput
.
view
(
gradOutput
=
gradOutput
.
view
(
{
batchSize
/
im2col_step
,
im2col_step
,
nOutputPlane
,
outputHeight
,
outputWidth
});
{
1
,
gradOutput
.
size
(
0
),
gradOutput
.
size
(
1
),
gradOutput
.
size
(
2
)});
gradOutput
.
transpose_
(
1
,
2
);
}
at
::
Tensor
gradOutputBuffer
=
at
::
zeros_like
(
gradOutput
);
long
batchSize
=
input
.
size
(
0
);
long
nInputPlane
=
input
.
size
(
1
);
long
inputHeight
=
input
.
size
(
2
);
long
inputWidth
=
input
.
size
(
3
);
long
nOutputPlane
=
gradWeight
.
size
(
0
);
long
outputWidth
=
(
inputWidth
+
2
*
padW
-
(
dilationW
*
(
kW
-
1
)
+
1
))
/
dW
+
1
;
long
outputHeight
=
(
inputHeight
+
2
*
padH
-
(
dilationH
*
(
kH
-
1
)
+
1
))
/
dH
+
1
;
AT_CHECK
((
offset
.
size
(
0
)
==
batchSize
),
"invalid batch size of offset"
);
columns
=
at
::
zeros
(
{
nInputPlane
*
kW
*
kH
,
im2col_step
*
outputHeight
*
outputWidth
},
input
.
type
());
gradOutput
=
gradOutput
.
view
({
batchSize
/
im2col_step
,
im2col_step
,
nOutputPlane
,
outputHeight
,
outputWidth
});
gradOutput
.
transpose_
(
1
,
2
);
at
::
Tensor
gradOutputBuffer
=
at
::
zeros_like
(
gradOutput
);
gradOutputBuffer
=
gradOutputBuffer
.
view
({
batchSize
/
im2col_step
,
nOutputPlane
,
im2col_step
,
outputHeight
,
outputWidth
});
gradOutputBuffer
.
copy_
(
gradOutput
);
gradOutputBuffer
=
gradOutputBuffer
.
view
({
batchSize
/
im2col_step
,
nOutputPlane
,
im2col_step
*
outputHeight
,
outputWidth
});
gradOutput
.
transpose_
(
1
,
2
);
gradOutput
=
gradOutput
.
view
({
batchSize
,
nOutputPlane
,
outputHeight
,
outputWidth
});
input
=
input
.
view
({
batchSize
/
im2col_step
,
im2col_step
,
nInputPlane
,
inputHeight
,
inputWidth
});
offset
=
offset
.
view
({
batchSize
/
im2col_step
,
im2col_step
,
deformable_group
*
2
*
kH
*
kW
,
outputHeight
,
outputWidth
});
for
(
int
elt
=
0
;
elt
<
batchSize
/
im2col_step
;
elt
++
)
{
deformable_im2col
(
input
[
elt
],
offset
[
elt
],
nInputPlane
,
inputHeight
,
inputWidth
,
kH
,
kW
,
padH
,
padW
,
dH
,
dW
,
dilationH
,
dilationW
,
im2col_step
,
deformable_group
,
columns
);
// divide into group
gradOutputBuffer
=
gradOutputBuffer
.
view
(
gradOutputBuffer
=
gradOutputBuffer
.
view
(
{
batchSize
/
im2col_step
,
nOutputPlane
,
im2col_step
,
outputHeight
,
outputWidth
});
{
gradOutputBuffer
.
size
(
0
),
group
,
gradOutputBuffer
.
size
(
1
)
/
group
,
gradOutputBuffer
.
copy_
(
gradOutput
);
gradOutputBuffer
.
size
(
2
),
gradOutputBuffer
.
size
(
3
)});
gradOutputBuffer
=
gradOutputBuffer
.
view
(
columns
=
columns
.
view
({
group
,
columns
.
size
(
0
)
/
group
,
columns
.
size
(
1
)});
{
batchSize
/
im2col_step
,
nOutputPlane
,
im2col_step
*
outputHeight
,
outputWidth
});
gradWeight
=
gradWeight
.
view
({
group
,
gradWeight
.
size
(
0
)
/
group
,
gradWeight
.
size
(
1
),
gradOutput
.
transpose_
(
1
,
2
);
gradWeight
.
size
(
2
),
gradWeight
.
size
(
3
)});
gradOutput
=
gradOutput
.
view
({
batchSize
,
nOutputPlane
,
outputHeight
,
outputWidth
});
for
(
int
g
=
0
;
g
<
group
;
g
++
)
{
input
=
input
.
view
({
batchSize
/
im2col_step
,
im2col_step
,
nInputPlane
,
inputHeight
,
inputWidth
});
gradWeight
[
g
]
=
gradWeight
[
g
]
offset
=
offset
.
view
({
batchSize
/
im2col_step
,
im2col_step
,
.
flatten
(
1
)
deformable_group
*
2
*
kH
*
kW
,
.
addmm_
(
gradOutputBuffer
[
elt
][
g
].
flatten
(
1
),
outputHeight
,
outputWidth
});
columns
[
g
].
transpose
(
1
,
0
),
1.0
,
scale
)
.
view_as
(
gradWeight
[
g
]);
for
(
int
elt
=
0
;
elt
<
batchSize
/
im2col_step
;
elt
++
)
{
deformable_im2col
(
input
[
elt
],
offset
[
elt
],
nInputPlane
,
inputHeight
,
inputWidth
,
kH
,
kW
,
padH
,
padW
,
dH
,
dW
,
dilationH
,
dilationW
,
im2col_step
,
deformable_group
,
columns
);
// divide into group
gradOutputBuffer
=
gradOutputBuffer
.
view
({
gradOutputBuffer
.
size
(
0
),
group
,
gradOutputBuffer
.
size
(
1
)
/
group
,
gradOutputBuffer
.
size
(
2
),
gradOutputBuffer
.
size
(
3
)});
columns
=
columns
.
view
({
group
,
columns
.
size
(
0
)
/
group
,
columns
.
size
(
1
)});
gradWeight
=
gradWeight
.
view
({
group
,
gradWeight
.
size
(
0
)
/
group
,
gradWeight
.
size
(
1
),
gradWeight
.
size
(
2
),
gradWeight
.
size
(
3
)});
for
(
int
g
=
0
;
g
<
group
;
g
++
){
gradWeight
[
g
]
=
gradWeight
[
g
].
flatten
(
1
).
addmm_
(
gradOutputBuffer
[
elt
][
g
].
flatten
(
1
),
columns
[
g
].
transpose
(
1
,
0
),
1.0
,
scale
)
.
view_as
(
gradWeight
[
g
]);
}
gradOutputBuffer
=
gradOutputBuffer
.
view
({
gradOutputBuffer
.
size
(
0
),
gradOutputBuffer
.
size
(
1
)
*
gradOutputBuffer
.
size
(
2
),
gradOutputBuffer
.
size
(
3
),
gradOutputBuffer
.
size
(
4
)});
columns
=
columns
.
view
({
columns
.
size
(
0
)
*
columns
.
size
(
1
),
columns
.
size
(
2
)});
gradWeight
=
gradWeight
.
view
({
gradWeight
.
size
(
0
)
*
gradWeight
.
size
(
1
),
gradWeight
.
size
(
2
),
gradWeight
.
size
(
3
),
gradWeight
.
size
(
4
)});
}
}
gradOutputBuffer
=
gradOutputBuffer
.
view
(
input
=
input
.
view
({
batchSize
,
nInputPlane
,
inputHeight
,
inputWidth
});
{
gradOutputBuffer
.
size
(
0
),
offset
=
offset
.
view
({
batchSize
,
deformable_group
*
2
*
kH
*
kW
,
gradOutputBuffer
.
size
(
1
)
*
gradOutputBuffer
.
size
(
2
),
outputHeight
,
outputWidth
});
gradOutputBuffer
.
size
(
3
),
gradOutputBuffer
.
size
(
4
)});
columns
=
if
(
batch
==
0
)
columns
.
view
({
columns
.
size
(
0
)
*
columns
.
size
(
1
),
columns
.
size
(
2
)});
{
gradWeight
=
gradWeight
.
view
({
gradWeight
.
size
(
0
)
*
gradWeight
.
size
(
1
),
gradOutput
=
gradOutput
.
view
({
nOutputPlane
,
outputHeight
,
outputWidth
});
gradWeight
.
size
(
2
),
gradWeight
.
size
(
3
),
input
=
input
.
view
({
nInputPlane
,
inputHeight
,
inputWidth
});
gradWeight
.
size
(
4
)});
}
}
return
1
;
input
=
input
.
view
({
batchSize
,
nInputPlane
,
inputHeight
,
inputWidth
});
offset
=
offset
.
view
(
{
batchSize
,
deformable_group
*
2
*
kH
*
kW
,
outputHeight
,
outputWidth
});
if
(
batch
==
0
)
{
gradOutput
=
gradOutput
.
view
({
nOutputPlane
,
outputHeight
,
outputWidth
});
input
=
input
.
view
({
nInputPlane
,
inputHeight
,
inputWidth
});
}
return
1
;
}
}
void
modulated_deform_conv_cuda_forward
(
void
modulated_deform_conv_cuda_forward
(
at
::
Tensor
input
,
at
::
Tensor
weight
,
at
::
Tensor
input
,
at
::
Tensor
weight
,
at
::
Tensor
bias
,
at
::
Tensor
ones
,
at
::
Tensor
bias
,
at
::
Tensor
ones
,
at
::
Tensor
offset
,
at
::
Tensor
mask
,
at
::
Tensor
output
,
at
::
Tensor
columns
,
at
::
Tensor
offset
,
at
::
Tensor
mask
,
int
kernel_h
,
int
kernel_w
,
const
int
stride_h
,
const
int
stride_w
,
at
::
Tensor
output
,
at
::
Tensor
columns
,
const
int
pad_h
,
const
int
pad_w
,
const
int
dilation_h
,
int
kernel_h
,
int
kernel_w
,
const
int
dilation_w
,
const
int
group
,
const
int
deformable_group
,
const
int
stride_h
,
const
int
stride_w
,
const
bool
with_bias
)
{
const
int
pad_h
,
const
int
pad_w
,
AT_CHECK
(
input
.
is_contiguous
(),
"input tensor has to be contiguous"
);
const
int
dilation_h
,
const
int
dilation_w
,
const
int
group
,
AT_CHECK
(
weight
.
is_contiguous
(),
"weight tensor has to be contiguous"
);
const
int
deformable_group
,
const
bool
with_bias
)
{
const
int
batch
=
input
.
size
(
0
);
AT_CHECK
(
input
.
is_contiguous
(),
"input tensor has to be contiguous"
);
const
int
channels
=
input
.
size
(
1
);
AT_CHECK
(
weight
.
is_contiguous
(),
"weight tensor has to be contiguous"
);
const
int
height
=
input
.
size
(
2
);
const
int
width
=
input
.
size
(
3
);
const
int
batch
=
input
.
size
(
0
);
const
int
channels
=
input
.
size
(
1
);
const
int
channels_out
=
weight
.
size
(
0
);
const
int
height
=
input
.
size
(
2
);
const
int
channels_kernel
=
weight
.
size
(
1
);
const
int
width
=
input
.
size
(
3
);
const
int
kernel_h_
=
weight
.
size
(
2
);
const
int
kernel_w_
=
weight
.
size
(
3
);
const
int
channels_out
=
weight
.
size
(
0
);
const
int
channels_kernel
=
weight
.
size
(
1
);
if
(
kernel_h_
!=
kernel_h
||
kernel_w_
!=
kernel_w
)
const
int
kernel_h_
=
weight
.
size
(
2
);
AT_ERROR
(
"Input shape and kernel shape wont match: (%d x %d vs %d x %d)."
,
const
int
kernel_w_
=
weight
.
size
(
3
);
kernel_h_
,
kernel_w
,
kernel_h_
,
kernel_w_
);
if
(
channels
!=
channels_kernel
*
group
)
if
(
kernel_h_
!=
kernel_h
||
kernel_w_
!=
kernel_w
)
AT_ERROR
(
"Input shape and kernel channels wont match: (%d vs %d)."
,
AT_ERROR
(
"Input shape and kernel shape wont match: (%d x %d vs %d x %d)."
,
channels
,
channels_kernel
*
group
);
kernel_h_
,
kernel_w
,
kernel_h_
,
kernel_w_
);
if
(
channels
!=
channels_kernel
*
group
)
const
int
height_out
=
AT_ERROR
(
"Input shape and kernel channels wont match: (%d vs %d)."
,
(
height
+
2
*
pad_h
-
(
dilation_h
*
(
kernel_h
-
1
)
+
1
))
/
stride_h
+
1
;
channels
,
channels_kernel
*
group
);
const
int
width_out
=
(
width
+
2
*
pad_w
-
(
dilation_w
*
(
kernel_w
-
1
)
+
1
))
/
stride_w
+
1
;
const
int
height_out
=
(
height
+
2
*
pad_h
-
(
dilation_h
*
(
kernel_h
-
1
)
+
1
))
/
stride_h
+
1
;
const
int
width_out
=
(
width
+
2
*
pad_w
-
(
dilation_w
*
(
kernel_w
-
1
)
+
1
))
/
stride_w
+
1
;
if
(
ones
.
ndimension
()
!=
2
||
ones
.
size
(
0
)
*
ones
.
size
(
1
)
<
height_out
*
width_out
)
{
if
(
ones
.
ndimension
()
!=
2
||
// Resize plane and fill with ones...
ones
.
size
(
0
)
*
ones
.
size
(
1
)
<
height_out
*
width_out
)
ones
=
at
::
ones
({
height_out
,
width_out
},
input
.
type
());
{
}
// Resize plane and fill with ones...
ones
=
at
::
ones
({
height_out
,
width_out
},
input
.
type
());
// resize output
output
=
output
.
view
({
batch
,
channels_out
,
height_out
,
width_out
}).
zero_
();
// resize temporary columns
columns
=
at
::
zeros
({
channels
*
kernel_h
*
kernel_w
,
1
*
height_out
*
width_out
},
input
.
type
());
output
=
output
.
view
({
output
.
size
(
0
),
group
,
output
.
size
(
1
)
/
group
,
output
.
size
(
2
),
output
.
size
(
3
)});
for
(
int
b
=
0
;
b
<
batch
;
b
++
)
{
modulated_deformable_im2col_cuda
(
input
[
b
],
offset
[
b
],
mask
[
b
],
1
,
channels
,
height
,
width
,
height_out
,
width_out
,
kernel_h
,
kernel_w
,
pad_h
,
pad_w
,
stride_h
,
stride_w
,
dilation_h
,
dilation_w
,
deformable_group
,
columns
);
// divide into group
weight
=
weight
.
view
({
group
,
weight
.
size
(
0
)
/
group
,
weight
.
size
(
1
),
weight
.
size
(
2
),
weight
.
size
(
3
)});
columns
=
columns
.
view
({
group
,
columns
.
size
(
0
)
/
group
,
columns
.
size
(
1
)});
for
(
int
g
=
0
;
g
<
group
;
g
++
)
{
output
[
b
][
g
]
=
output
[
b
][
g
]
.
flatten
(
1
)
.
addmm_
(
weight
[
g
].
flatten
(
1
),
columns
[
g
])
.
view_as
(
output
[
b
][
g
]);
}
}
// resize output
weight
=
weight
.
view
({
weight
.
size
(
0
)
*
weight
.
size
(
1
),
weight
.
size
(
2
),
output
=
output
.
view
({
batch
,
channels_out
,
height_out
,
width_out
}).
zero_
();
weight
.
size
(
3
),
weight
.
size
(
4
)});
// resize temporary columns
columns
=
columns
=
at
::
zeros
({
channels
*
kernel_h
*
kernel_w
,
1
*
height_out
*
width_out
},
input
.
type
());
columns
.
view
({
columns
.
size
(
0
)
*
columns
.
size
(
1
),
columns
.
size
(
2
)});
}
output
=
output
.
view
({
output
.
size
(
0
),
group
,
output
.
size
(
1
)
/
group
,
output
.
size
(
2
),
output
.
size
(
3
)});
for
(
int
b
=
0
;
b
<
batch
;
b
++
)
{
modulated_deformable_im2col_cuda
(
input
[
b
],
offset
[
b
],
mask
[
b
],
1
,
channels
,
height
,
width
,
height_out
,
width_out
,
kernel_h
,
kernel_w
,
pad_h
,
pad_w
,
stride_h
,
stride_w
,
dilation_h
,
dilation_w
,
deformable_group
,
columns
);
// divide into group
weight
=
weight
.
view
({
group
,
weight
.
size
(
0
)
/
group
,
weight
.
size
(
1
),
weight
.
size
(
2
),
weight
.
size
(
3
)});
columns
=
columns
.
view
({
group
,
columns
.
size
(
0
)
/
group
,
columns
.
size
(
1
)});
for
(
int
g
=
0
;
g
<
group
;
g
++
){
output
=
output
.
view
({
output
.
size
(
0
),
output
.
size
(
1
)
*
output
.
size
(
2
),
output
[
b
][
g
]
=
output
[
b
][
g
].
flatten
(
1
).
addmm_
(
weight
[
g
].
flatten
(
1
),
columns
[
g
]).
view_as
(
output
[
b
][
g
]);
output
.
size
(
3
),
output
.
size
(
4
)});
}
weight
=
weight
.
view
({
weight
.
size
(
0
)
*
weight
.
size
(
1
),
weight
.
size
(
2
),
weight
.
size
(
3
),
weight
.
size
(
4
)});
if
(
with_bias
)
{
columns
=
columns
.
view
({
columns
.
size
(
0
)
*
columns
.
size
(
1
),
columns
.
size
(
2
)});
output
+=
bias
.
view
({
1
,
bias
.
size
(
0
),
1
,
1
});
}
}
output
=
output
.
view
({
output
.
size
(
0
),
output
.
size
(
1
)
*
output
.
size
(
2
),
output
.
size
(
3
),
output
.
size
(
4
)});
if
(
with_bias
){
output
+=
bias
.
view
({
1
,
bias
.
size
(
0
),
1
,
1
});
}
}
}
void
modulated_deform_conv_cuda_backward
(
at
::
Tensor
input
,
at
::
Tensor
weight
,
void
modulated_deform_conv_cuda_backward
(
at
::
Tensor
bias
,
at
::
Tensor
ones
,
at
::
Tensor
input
,
at
::
Tensor
weight
,
at
::
Tensor
bias
,
at
::
Tensor
ones
,
at
::
Tensor
offset
,
at
::
Tensor
mask
,
at
::
Tensor
offset
,
at
::
Tensor
mask
,
at
::
Tensor
columns
,
at
::
Tensor
columns
,
at
::
Tensor
grad_input
,
at
::
Tensor
grad_weight
,
at
::
Tensor
grad_bias
,
at
::
Tensor
grad_input
,
at
::
Tensor
grad_weight
,
at
::
Tensor
grad_offset
,
at
::
Tensor
grad_mask
,
at
::
Tensor
grad_output
,
at
::
Tensor
grad_bias
,
at
::
Tensor
grad_offset
,
int
kernel_h
,
int
kernel_w
,
int
stride_h
,
int
stride_w
,
int
pad_h
,
at
::
Tensor
grad_mask
,
at
::
Tensor
grad_output
,
int
pad_w
,
int
dilation_h
,
int
dilation_w
,
int
group
,
int
deformable_group
,
int
kernel_h
,
int
kernel_w
,
const
bool
with_bias
)
{
int
stride_h
,
int
stride_w
,
AT_CHECK
(
input
.
is_contiguous
(),
"input tensor has to be contiguous"
);
int
pad_h
,
int
pad_w
,
AT_CHECK
(
weight
.
is_contiguous
(),
"weight tensor has to be contiguous"
);
int
dilation_h
,
int
dilation_w
,
int
group
,
int
deformable_group
,
const
bool
with_bias
)
const
int
batch
=
input
.
size
(
0
);
{
const
int
channels
=
input
.
size
(
1
);
AT_CHECK
(
input
.
is_contiguous
(),
"input tensor has to be contiguous"
);
const
int
height
=
input
.
size
(
2
);
AT_CHECK
(
weight
.
is_contiguous
(),
"weight tensor has to be contiguous"
);
const
int
width
=
input
.
size
(
3
);
const
int
batch
=
input
.
size
(
0
);
const
int
channels_kernel
=
weight
.
size
(
1
);
const
int
channels
=
input
.
size
(
1
);
const
int
kernel_h_
=
weight
.
size
(
2
);
const
int
height
=
input
.
size
(
2
);
const
int
kernel_w_
=
weight
.
size
(
3
);
const
int
width
=
input
.
size
(
3
);
if
(
kernel_h_
!=
kernel_h
||
kernel_w_
!=
kernel_w
)
AT_ERROR
(
"Input shape and kernel shape wont match: (%d x %d vs %d x %d)."
,
const
int
channels_kernel
=
weight
.
size
(
1
);
kernel_h_
,
kernel_w
,
kernel_h_
,
kernel_w_
);
const
int
kernel_h_
=
weight
.
size
(
2
);
if
(
channels
!=
channels_kernel
*
group
)
const
int
kernel_w_
=
weight
.
size
(
3
);
AT_ERROR
(
"Input shape and kernel channels wont match: (%d vs %d)."
,
if
(
kernel_h_
!=
kernel_h
||
kernel_w_
!=
kernel_w
)
channels
,
channels_kernel
*
group
);
AT_ERROR
(
"Input shape and kernel shape wont match: (%d x %d vs %d x %d)."
,
kernel_h_
,
kernel_w
,
kernel_h_
,
kernel_w_
);
const
int
height_out
=
if
(
channels
!=
channels_kernel
*
group
)
(
height
+
2
*
pad_h
-
(
dilation_h
*
(
kernel_h
-
1
)
+
1
))
/
stride_h
+
1
;
AT_ERROR
(
"Input shape and kernel channels wont match: (%d vs %d)."
,
const
int
width_out
=
channels
,
channels_kernel
*
group
);
(
width
+
2
*
pad_w
-
(
dilation_w
*
(
kernel_w
-
1
)
+
1
))
/
stride_w
+
1
;
const
int
height_out
=
(
height
+
2
*
pad_h
-
(
dilation_h
*
(
kernel_h
-
1
)
+
1
))
/
stride_h
+
1
;
if
(
ones
.
ndimension
()
!=
2
||
const
int
width_out
=
(
width
+
2
*
pad_w
-
(
dilation_w
*
(
kernel_w
-
1
)
+
1
))
/
stride_w
+
1
;
ones
.
size
(
0
)
*
ones
.
size
(
1
)
<
height_out
*
width_out
)
{
// Resize plane and fill with ones...
if
(
ones
.
ndimension
()
!=
2
||
ones
=
at
::
ones
({
height_out
,
width_out
},
input
.
type
());
ones
.
size
(
0
)
*
ones
.
size
(
1
)
<
height_out
*
width_out
)
}
{
// Resize plane and fill with ones...
grad_input
=
grad_input
.
view
({
batch
,
channels
,
height
,
width
});
ones
=
at
::
ones
({
height_out
,
width_out
},
input
.
type
());
columns
=
at
::
zeros
({
channels
*
kernel_h
*
kernel_w
,
height_out
*
width_out
},
input
.
type
());
grad_output
=
grad_output
.
view
({
grad_output
.
size
(
0
),
group
,
grad_output
.
size
(
1
)
/
group
,
grad_output
.
size
(
2
),
grad_output
.
size
(
3
)});
for
(
int
b
=
0
;
b
<
batch
;
b
++
)
{
// divide int group
columns
=
columns
.
view
({
group
,
columns
.
size
(
0
)
/
group
,
columns
.
size
(
1
)});
weight
=
weight
.
view
({
group
,
weight
.
size
(
0
)
/
group
,
weight
.
size
(
1
),
weight
.
size
(
2
),
weight
.
size
(
3
)});
for
(
int
g
=
0
;
g
<
group
;
g
++
)
{
columns
[
g
].
addmm_
(
weight
[
g
].
flatten
(
1
).
transpose
(
0
,
1
),
grad_output
[
b
][
g
].
flatten
(
1
),
0.0
f
,
1.0
f
);
}
}
grad_input
=
grad_input
.
view
({
batch
,
channels
,
height
,
width
});
columns
=
columns
=
at
::
zeros
({
channels
*
kernel_h
*
kernel_w
,
height_out
*
width_out
},
input
.
type
());
columns
.
view
({
columns
.
size
(
0
)
*
columns
.
size
(
1
),
columns
.
size
(
2
)});
weight
=
weight
.
view
({
weight
.
size
(
0
)
*
weight
.
size
(
1
),
weight
.
size
(
2
),
grad_output
=
grad_output
.
view
({
grad_output
.
size
(
0
),
group
,
grad_output
.
size
(
1
)
/
group
,
grad_output
.
size
(
2
),
grad_output
.
size
(
3
)});
weight
.
size
(
3
),
weight
.
size
(
4
)});
for
(
int
b
=
0
;
b
<
batch
;
b
++
)
// gradient w.r.t. input coordinate data
{
modulated_deformable_col2im_coord_cuda
(
// divide int group
columns
,
input
[
b
],
offset
[
b
],
mask
[
b
],
1
,
channels
,
height
,
width
,
columns
=
columns
.
view
({
group
,
columns
.
size
(
0
)
/
group
,
columns
.
size
(
1
)});
height_out
,
width_out
,
kernel_h
,
kernel_w
,
pad_h
,
pad_w
,
stride_h
,
weight
=
weight
.
view
({
group
,
weight
.
size
(
0
)
/
group
,
weight
.
size
(
1
),
weight
.
size
(
2
),
weight
.
size
(
3
)});
stride_w
,
dilation_h
,
dilation_w
,
deformable_group
,
grad_offset
[
b
],
grad_mask
[
b
]);
for
(
int
g
=
0
;
g
<
group
;
g
++
){
// gradient w.r.t. input data
columns
[
g
].
addmm_
(
weight
[
g
].
flatten
(
1
).
transpose
(
0
,
1
),
grad_output
[
b
][
g
].
flatten
(
1
),
0.0
f
,
1.0
f
);
modulated_deformable_col2im_cuda
(
}
columns
,
offset
[
b
],
mask
[
b
],
1
,
channels
,
height
,
width
,
height_out
,
width_out
,
kernel_h
,
kernel_w
,
pad_h
,
pad_w
,
stride_h
,
stride_w
,
columns
=
columns
.
view
({
columns
.
size
(
0
)
*
columns
.
size
(
1
),
columns
.
size
(
2
)});
dilation_h
,
dilation_w
,
deformable_group
,
grad_input
[
b
]);
weight
=
weight
.
view
({
weight
.
size
(
0
)
*
weight
.
size
(
1
),
weight
.
size
(
2
),
weight
.
size
(
3
),
weight
.
size
(
4
)});
// gradient w.r.t. weight, dWeight should accumulate across the batch and
// gradient w.r.t. input coordinate data
// group
modulated_deformable_col2im_coord_cuda
(
columns
,
input
[
b
],
offset
[
b
],
mask
[
b
],
modulated_deformable_im2col_cuda
(
1
,
channels
,
height
,
width
,
input
[
b
],
offset
[
b
],
mask
[
b
],
1
,
channels
,
height
,
width
,
height_out
,
height_out
,
width_out
,
kernel_h
,
kernel_w
,
width_out
,
kernel_h
,
kernel_w
,
pad_h
,
pad_w
,
stride_h
,
stride_w
,
pad_h
,
pad_w
,
stride_h
,
stride_w
,
dilation_h
,
dilation_w
,
deformable_group
,
columns
);
dilation_h
,
dilation_w
,
deformable_group
,
grad_offset
[
b
],
grad_mask
[
b
]);
columns
=
columns
.
view
({
group
,
columns
.
size
(
0
)
/
group
,
columns
.
size
(
1
)});
// gradient w.r.t. input data
grad_weight
=
grad_weight
.
view
({
group
,
grad_weight
.
size
(
0
)
/
group
,
modulated_deformable_col2im_cuda
(
columns
,
offset
[
b
],
mask
[
b
],
grad_weight
.
size
(
1
),
grad_weight
.
size
(
2
),
1
,
channels
,
height
,
width
,
grad_weight
.
size
(
3
)});
height_out
,
width_out
,
kernel_h
,
kernel_w
,
if
(
with_bias
)
pad_h
,
pad_w
,
stride_h
,
stride_w
,
grad_bias
=
grad_bias
.
view
({
group
,
grad_bias
.
size
(
0
)
/
group
});
dilation_h
,
dilation_w
,
deformable_group
,
grad_input
[
b
]);
for
(
int
g
=
0
;
g
<
group
;
g
++
)
{
grad_weight
[
g
]
=
// gradient w.r.t. weight, dWeight should accumulate across the batch and group
grad_weight
[
g
]
modulated_deformable_im2col_cuda
(
input
[
b
],
offset
[
b
],
mask
[
b
],
.
flatten
(
1
)
1
,
channels
,
height
,
width
,
.
addmm_
(
grad_output
[
b
][
g
].
flatten
(
1
),
columns
[
g
].
transpose
(
0
,
1
))
height_out
,
width_out
,
kernel_h
,
kernel_w
,
.
view_as
(
grad_weight
[
g
]);
pad_h
,
pad_w
,
stride_h
,
stride_w
,
if
(
with_bias
)
{
dilation_h
,
dilation_w
,
deformable_group
,
grad_bias
[
g
]
=
columns
);
grad_bias
[
g
]
.
view
({
-
1
,
1
})
columns
=
columns
.
view
({
group
,
columns
.
size
(
0
)
/
group
,
columns
.
size
(
1
)});
.
addmm_
(
grad_output
[
b
][
g
].
flatten
(
1
),
ones
.
view
({
-
1
,
1
}))
grad_weight
=
grad_weight
.
view
({
group
,
grad_weight
.
size
(
0
)
/
group
,
grad_weight
.
size
(
1
),
grad_weight
.
size
(
2
),
grad_weight
.
size
(
3
)});
.
view
(
-
1
);
if
(
with_bias
)
}
grad_bias
=
grad_bias
.
view
({
group
,
grad_bias
.
size
(
0
)
/
group
});
for
(
int
g
=
0
;
g
<
group
;
g
++
){
grad_weight
[
g
]
=
grad_weight
[
g
].
flatten
(
1
).
addmm_
(
grad_output
[
b
][
g
].
flatten
(
1
),
columns
[
g
].
transpose
(
0
,
1
)).
view_as
(
grad_weight
[
g
]);
if
(
with_bias
){
grad_bias
[
g
]
=
grad_bias
[
g
].
view
({
-
1
,
1
}).
addmm_
(
grad_output
[
b
][
g
].
flatten
(
1
),
ones
.
view
({
-
1
,
1
})).
view
(
-
1
);
}
}
columns
=
columns
.
view
({
columns
.
size
(
0
)
*
columns
.
size
(
1
),
columns
.
size
(
2
)});
grad_weight
=
grad_weight
.
view
({
grad_weight
.
size
(
0
)
*
grad_weight
.
size
(
1
),
grad_weight
.
size
(
2
),
grad_weight
.
size
(
3
),
grad_weight
.
size
(
4
)});
if
(
with_bias
)
grad_bias
=
grad_bias
.
view
({
grad_bias
.
size
(
0
)
*
grad_bias
.
size
(
1
)});
}
}
grad_output
=
grad_output
.
view
({
grad_output
.
size
(
0
)
*
grad_output
.
size
(
1
),
grad_output
.
size
(
2
),
grad_output
.
size
(
3
),
grad_output
.
size
(
4
)});
}
columns
=
columns
.
view
({
columns
.
size
(
0
)
*
columns
.
size
(
1
),
columns
.
size
(
2
)});
grad_weight
=
grad_weight
.
view
({
grad_weight
.
size
(
0
)
*
grad_weight
.
size
(
1
),
grad_weight
.
size
(
2
),
grad_weight
.
size
(
3
),
grad_weight
.
size
(
4
)});
if
(
with_bias
)
grad_bias
=
grad_bias
.
view
({
grad_bias
.
size
(
0
)
*
grad_bias
.
size
(
1
)});
}
grad_output
=
grad_output
.
view
({
grad_output
.
size
(
0
)
*
grad_output
.
size
(
1
),
grad_output
.
size
(
2
),
grad_output
.
size
(
3
),
grad_output
.
size
(
4
)});
}
PYBIND11_MODULE
(
TORCH_EXTENSION_NAME
,
m
)
PYBIND11_MODULE
(
TORCH_EXTENSION_NAME
,
m
)
{
{
m
.
def
(
"deform_conv_forward_cuda"
,
&
deform_conv_forward_cuda
,
m
.
def
(
"deform_conv_forward_cuda"
,
&
deform_conv_forward_cuda
,
"deform forward (CUDA)"
);
"deform forward (CUDA)"
);
m
.
def
(
"deform_conv_backward_input_cuda"
,
&
deform_conv_backward_input_cuda
,
m
.
def
(
"deform_conv_backward_input_cuda"
,
&
deform_conv_backward_input_cuda
,
"deform_conv_backward_input (CUDA)"
);
"deform_conv_backward_input (CUDA)"
);
m
.
def
(
"deform_conv_backward_parameters_cuda"
,
&
deform_conv_backward_parameters_cuda
,
m
.
def
(
"deform_conv_backward_parameters_cuda"
,
"deform_conv_backward_parameters (CUDA)"
);
&
deform_conv_backward_parameters_cuda
,
m
.
def
(
"modulated_deform_conv_cuda_forward"
,
&
modulated_deform_conv_cuda_forward
,
"deform_conv_backward_parameters (CUDA)"
);
"modulated deform conv forward (CUDA)"
);
m
.
def
(
"modulated_deform_conv_cuda_forward"
,
m
.
def
(
"modulated_deform_conv_cuda_backward"
,
&
modulated_deform_conv_cuda_backward
,
&
modulated_deform_conv_cuda_forward
,
"modulated deform conv backward (CUDA)"
);
"modulated deform conv forward (CUDA)"
);
m
.
def
(
"modulated_deform_conv_cuda_backward"
,
&
modulated_deform_conv_cuda_backward
,
"modulated deform conv backward (CUDA)"
);
}
}
mmdet/ops/dcn/src/deform_pool_cuda.cpp
View file @
ba73bcc5
// modify from
// https://github.com/chengdazhi/Deformable-Convolution-V2-PyTorch/blob/mmdetection/mmdet/ops/dcn/src/modulated_dcn_cuda.c
// based on
// author: Charles Shang
// author: Charles Shang
// https://github.com/torch/cunn/blob/master/lib/THCUNN/generic/SpatialConvolutionMM.cu
// https://github.com/torch/cunn/blob/master/lib/THCUNN/generic/SpatialConvolutionMM.cu
// modify from https://github.com/chengdazhi/Deformable-Convolution-V2-PyTorch/blob /mmdetection/mmdet/ops/dcn/src/modulated_dcn_cuda.c
#include <torch/extension.h>
#include <torch/torch.h>
#include <cmath>
#include <cmath>
#include <vector>
#include <vector>
void
DeformablePSROIPoolForward
(
const
at
::
Tensor
data
,
void
DeformablePSROIPoolForward
(
const
at
::
Tensor
bbox
,
const
at
::
Tensor
data
,
const
at
::
Tensor
bbox
,
const
at
::
Tensor
trans
,
const
at
::
Tensor
trans
,
at
::
Tensor
out
,
at
::
Tensor
top_count
,
const
int
batch
,
const
int
channels
,
at
::
Tensor
out
,
const
int
height
,
const
int
width
,
const
int
num_bbox
,
at
::
Tensor
top_count
,
const
int
channels_trans
,
const
int
no_trans
,
const
float
spatial_scale
,
const
int
batch
,
const
int
output_dim
,
const
int
group_size
,
const
int
pooled_size
,
const
int
channels
,
const
int
part_size
,
const
int
sample_per_part
,
const
float
trans_std
);
const
int
height
,
const
int
width
,
const
int
num_bbox
,
const
int
channels_trans
,
const
int
no_trans
,
const
float
spatial_scale
,
const
int
output_dim
,
const
int
group_size
,
const
int
pooled_size
,
const
int
part_size
,
const
int
sample_per_part
,
const
float
trans_std
);
void
DeformablePSROIPoolBackwardAcc
(
const
at
::
Tensor
out_grad
,
void
DeformablePSROIPoolBackwardAcc
(
const
at
::
Tensor
data
,
const
at
::
Tensor
out_grad
,
const
at
::
Tensor
data
,
const
at
::
Tensor
bbox
,
const
at
::
Tensor
bbox
,
const
at
::
Tensor
trans
,
const
at
::
Tensor
top_count
,
at
::
Tensor
in_grad
,
const
at
::
Tensor
trans
,
at
::
Tensor
trans_grad
,
const
int
batch
,
const
int
channels
,
const
at
::
Tensor
top_count
,
const
int
height
,
const
int
width
,
const
int
num_bbox
,
at
::
Tensor
in_grad
,
const
int
channels_trans
,
const
int
no_trans
,
const
float
spatial_scale
,
at
::
Tensor
trans_grad
,
const
int
output_dim
,
const
int
group_size
,
const
int
pooled_size
,
const
int
batch
,
const
int
part_size
,
const
int
sample_per_part
,
const
float
trans_std
);
const
int
channels
,
const
int
height
,
const
int
width
,
const
int
num_bbox
,
const
int
channels_trans
,
const
int
no_trans
,
const
float
spatial_scale
,
const
int
output_dim
,
const
int
group_size
,
const
int
pooled_size
,
const
int
part_size
,
const
int
sample_per_part
,
const
float
trans_std
);
void
deform_psroi_pooling_cuda_forward
(
at
::
Tensor
input
,
at
::
Tensor
bbox
,
void
deform_psroi_pooling_cuda_forward
(
at
::
Tensor
trans
,
at
::
Tensor
input
,
at
::
Tensor
bbox
,
at
::
Tensor
trans
,
at
::
Tensor
out
,
at
::
Tensor
out
,
at
::
Tensor
top_count
,
at
::
Tensor
top_count
,
const
int
no_trans
,
const
float
spatial_scale
,
const
int
no_trans
,
const
int
output_dim
,
const
int
group_size
,
const
int
pooled_size
,
const
float
spatial_scale
,
const
int
part_size
,
const
int
sample_per_part
,
const
float
trans_std
)
{
const
int
output_dim
,
AT_CHECK
(
input
.
is_contiguous
(),
"input tensor has to be contiguous"
);
const
int
group_size
,
const
int
pooled_size
,
const
int
part_size
,
const
int
sample_per_part
,
const
float
trans_std
)
{
AT_CHECK
(
input
.
is_contiguous
(),
"input tensor has to be contiguous"
);
const
int
batch
=
input
.
size
(
0
);
const
int
batch
=
input
.
size
(
0
);
const
int
channels
=
input
.
size
(
1
);
const
int
channels
=
input
.
size
(
1
);
const
int
height
=
input
.
size
(
2
);
const
int
height
=
input
.
size
(
2
);
const
int
width
=
input
.
size
(
3
);
const
int
width
=
input
.
size
(
3
);
const
int
channels_trans
=
no_trans
?
2
:
trans
.
size
(
1
);
const
int
channels_trans
=
no_trans
?
2
:
trans
.
size
(
1
);
const
int
num_bbox
=
bbox
.
size
(
0
);
const
int
num_bbox
=
bbox
.
size
(
0
);
if
(
num_bbox
!=
out
.
size
(
0
))
if
(
num_bbox
!=
out
.
size
(
0
))
AT_ERROR
(
"Output shape and bbox number wont match: (%d vs %d)."
,
AT_ERROR
(
"Output shape and bbox number wont match: (%d vs %d)."
,
out
.
size
(
0
),
num_bbox
);
out
.
size
(
0
),
num_bbox
);
DeformablePSROIPoolForward
(
input
,
bbox
,
trans
,
out
,
top_count
,
DeformablePSROIPoolForward
(
batch
,
channels
,
height
,
width
,
input
,
bbox
,
trans
,
out
,
top_count
,
batch
,
channels
,
height
,
width
,
num_bbox
,
num_bbox
,
channels_trans
,
no_trans
,
spatial_scale
,
output_dim
,
group_size
,
channels_trans
,
pooled_size
,
part_size
,
sample_per_part
,
trans_std
);
no_trans
,
spatial_scale
,
output_dim
,
group_size
,
pooled_size
,
part_size
,
sample_per_part
,
trans_std
);
}
}
void
deform_psroi_pooling_cuda_backward
(
at
::
Tensor
out_grad
,
void
deform_psroi_pooling_cuda_backward
(
at
::
Tensor
input
,
at
::
Tensor
bbox
,
at
::
Tensor
out_grad
,
at
::
Tensor
input
,
at
::
Tensor
bbox
,
at
::
Tensor
trans
,
at
::
Tensor
trans
,
at
::
Tensor
top_count
,
at
::
Tensor
top_count
,
at
::
Tensor
input_grad
,
at
::
Tensor
trans_grad
,
at
::
Tensor
input_grad
,
at
::
Tensor
trans_grad
,
const
int
no_trans
,
const
float
spatial_scale
,
const
int
output_dim
,
const
int
no_trans
,
const
int
group_size
,
const
int
pooled_size
,
const
int
part_size
,
const
float
spatial_scale
,
const
int
sample_per_part
,
const
float
trans_std
)
{
const
int
output_dim
,
AT_CHECK
(
out_grad
.
is_contiguous
(),
"out_grad tensor has to be contiguous"
);
const
int
group_size
,
AT_CHECK
(
input
.
is_contiguous
(),
"input tensor has to be contiguous"
);
const
int
pooled_size
,
const
int
part_size
,
const
int
sample_per_part
,
const
float
trans_std
)
{
AT_CHECK
(
out_grad
.
is_contiguous
(),
"out_grad tensor has to be contiguous"
);
AT_CHECK
(
input
.
is_contiguous
(),
"input tensor has to be contiguous"
);
const
int
batch
=
input
.
size
(
0
);
const
int
batch
=
input
.
size
(
0
);
const
int
channels
=
input
.
size
(
1
);
const
int
channels
=
input
.
size
(
1
);
const
int
height
=
input
.
size
(
2
);
const
int
height
=
input
.
size
(
2
);
const
int
width
=
input
.
size
(
3
);
const
int
width
=
input
.
size
(
3
);
const
int
channels_trans
=
no_trans
?
2
:
trans
.
size
(
1
);
const
int
channels_trans
=
no_trans
?
2
:
trans
.
size
(
1
);
const
int
num_bbox
=
bbox
.
size
(
0
);
const
int
num_bbox
=
bbox
.
size
(
0
);
if
(
num_bbox
!=
out_grad
.
size
(
0
))
if
(
num_bbox
!=
out_grad
.
size
(
0
))
AT_ERROR
(
"Output shape and bbox number wont match: (%d vs %d)."
,
AT_ERROR
(
"Output shape and bbox number wont match: (%d vs %d)."
,
out_grad
.
size
(
0
),
num_bbox
);
out_grad
.
size
(
0
),
num_bbox
);
DeformablePSROIPoolBackwardAcc
(
out_grad
,
DeformablePSROIPoolBackwardAcc
(
input
,
out_grad
,
input
,
bbox
,
trans
,
top_count
,
input_grad
,
trans_grad
,
batch
,
bbox
,
channels
,
height
,
width
,
num_bbox
,
channels_trans
,
no_trans
,
trans
,
spatial_scale
,
output_dim
,
group_size
,
pooled_size
,
part_size
,
top_count
,
sample_per_part
,
trans_std
);
input_grad
,
trans_grad
,
batch
,
channels
,
height
,
width
,
num_bbox
,
channels_trans
,
no_trans
,
spatial_scale
,
output_dim
,
group_size
,
pooled_size
,
part_size
,
sample_per_part
,
trans_std
);
}
}
PYBIND11_MODULE
(
TORCH_EXTENSION_NAME
,
m
)
PYBIND11_MODULE
(
TORCH_EXTENSION_NAME
,
m
)
{
{
m
.
def
(
"deform_psroi_pooling_cuda_forward"
,
&
deform_psroi_pooling_cuda_forward
,
m
.
def
(
"deform
_psroi_pooling_cuda_forward"
,
&
deform_
psroi
_
pooling
_cuda_
forward
,
"deform
psroi
pooling
forward
(CUDA)"
);
"deform
psroi
pooling
forward(CUDA)"
);
m
.
def
(
"deform
_
psroi
_
pooling
_cuda_backward"
,
m
.
def
(
"deform_psroi_pooling_cuda_backward"
,
&
deform_psroi_pooling_cuda_backward
,
&
deform_psroi_pooling_cuda_backward
,
"deform psroi pooling backward(CUDA)"
);
"deform psroi pooling backward(CUDA)"
);
}
}
\ No newline at end of file
mmdet/ops/nms/cpu_nms.pyx
View file @
ba73bcc5
...
@@ -5,6 +5,8 @@
...
@@ -5,6 +5,8 @@
# Written by Ross Girshick
# Written by Ross Girshick
# --------------------------------------------------------
# --------------------------------------------------------
# cython: language_level=3, boundscheck=False
import
numpy
as
np
import
numpy
as
np
cimport
numpy
as
np
cimport
numpy
as
np
...
...
mmdet/ops/nms/cpu_soft_nms.pyx
View file @
ba73bcc5
...
@@ -6,6 +6,8 @@
...
@@ -6,6 +6,8 @@
# Modified by Kai Chen
# Modified by Kai Chen
# ----------------------------------------------------------
# ----------------------------------------------------------
# cython: language_level=3, boundscheck=False
import
numpy
as
np
import
numpy
as
np
cimport
numpy
as
np
cimport
numpy
as
np
...
...
mmdet/ops/nms/gpu_nms.pyx
View file @
ba73bcc5
...
@@ -5,6 +5,8 @@
...
@@ -5,6 +5,8 @@
# Written by Ross Girshick
# Written by Ross Girshick
# --------------------------------------------------------
# --------------------------------------------------------
# cython: language_level=3, boundscheck=False
import
numpy
as
np
import
numpy
as
np
cimport
numpy
as
np
cimport
numpy
as
np
...
...
mmdet/ops/roi_align/functions/roi_align.py
View file @
ba73bcc5
from
torch.autograd
import
Function
,
Variable
from
torch.autograd
import
Function
from
..
import
roi_align_cuda
from
..
import
roi_align_cuda
...
@@ -49,11 +49,11 @@ class RoIAlignFunction(Function):
...
@@ -49,11 +49,11 @@ class RoIAlignFunction(Function):
grad_input
=
grad_rois
=
None
grad_input
=
grad_rois
=
None
if
ctx
.
needs_input_grad
[
0
]:
if
ctx
.
needs_input_grad
[
0
]:
grad_input
=
Variable
(
grad_input
=
rois
.
new_zeros
(
batch_size
,
num_channels
,
data_height
,
rois
.
new
(
batch_size
,
num_channels
,
data_height
,
data_width
)
data_width
)
.
zero_
())
roi_align_cuda
.
backward
(
grad_output
.
contiguous
(),
rois
,
out_h
,
roi_align_cuda
.
backward
(
grad_output
,
rois
,
out_h
,
out_w
,
out_w
,
spatial_scale
,
sample_num
,
spatial_scale
,
sample_num
,
grad_input
)
grad_input
)
return
grad_input
,
grad_rois
,
None
,
None
,
None
return
grad_input
,
grad_rois
,
None
,
None
,
None
...
...
mmdet/ops/roi_align/src/roi_align_cuda.cpp
View file @
ba73bcc5
#include <torch/
torch
.h>
#include <torch/
extension
.h>
#include <cmath>
#include <cmath>
#include <vector>
#include <vector>
...
...
mmdet/ops/roi_align/src/roi_align_kernel.cu
View file @
ba73bcc5
#include <ATen/ATen.h>
#include <ATen/ATen.h>
#include <THC/THCAtomics.cuh>
#include <THC/THCAtomics.cuh>
using
namespace
at
;
// temporal fix for pytorch<=0.4.1 (see #9848)
#define CUDA_1D_KERNEL_LOOP(i, n) \
#define CUDA_1D_KERNEL_LOOP(i, n) \
for (int i = blockIdx.x * blockDim.x + threadIdx.x; i < n; \
for (int i = blockIdx.x * blockDim.x + threadIdx.x; i < n; \
i += blockDim.x * gridDim.x)
i += blockDim.x * gridDim.x)
...
@@ -144,12 +142,7 @@ int ROIAlignForwardLaucher(const at::Tensor features, const at::Tensor rois,
...
@@ -144,12 +142,7 @@ int ROIAlignForwardLaucher(const at::Tensor features, const at::Tensor rois,
sample_num
,
channels
,
height
,
width
,
pooled_height
,
sample_num
,
channels
,
height
,
width
,
pooled_height
,
pooled_width
,
top_data
);
pooled_width
,
top_data
);
}));
}));
cudaError_t
err
=
cudaGetLastError
();
THCudaCheck
(
cudaGetLastError
());
if
(
cudaSuccess
!=
err
)
{
fprintf
(
stderr
,
"cudaCheckError() failed : %s
\n
"
,
cudaGetErrorString
(
err
));
exit
(
-
1
);
}
return
1
;
return
1
;
}
}
...
@@ -280,8 +273,7 @@ int ROIAlignBackwardLaucher(const at::Tensor top_grad, const at::Tensor rois,
...
@@ -280,8 +273,7 @@ int ROIAlignBackwardLaucher(const at::Tensor top_grad, const at::Tensor rois,
at
::
Tensor
bottom_grad
)
{
at
::
Tensor
bottom_grad
)
{
const
int
output_size
=
num_rois
*
pooled_height
*
pooled_width
*
channels
;
const
int
output_size
=
num_rois
*
pooled_height
*
pooled_width
*
channels
;
// TODO: use AT_DISPATCH_FLOATING_TYPES_AND_HALF when atomicAdd is resolved
AT_DISPATCH_FLOATING_TYPES_AND_HALF
(
AT_DISPATCH_FLOATING_TYPES
(
top_grad
.
type
(),
"ROIAlignLaucherBackward"
,
([
&
]
{
top_grad
.
type
(),
"ROIAlignLaucherBackward"
,
([
&
]
{
const
scalar_t
*
top_diff
=
top_grad
.
data
<
scalar_t
>
();
const
scalar_t
*
top_diff
=
top_grad
.
data
<
scalar_t
>
();
const
scalar_t
*
rois_data
=
rois
.
data
<
scalar_t
>
();
const
scalar_t
*
rois_data
=
rois
.
data
<
scalar_t
>
();
...
@@ -297,11 +289,6 @@ int ROIAlignBackwardLaucher(const at::Tensor top_grad, const at::Tensor rois,
...
@@ -297,11 +289,6 @@ int ROIAlignBackwardLaucher(const at::Tensor top_grad, const at::Tensor rois,
channels
,
height
,
width
,
pooled_height
,
pooled_width
,
channels
,
height
,
width
,
pooled_height
,
pooled_width
,
bottom_diff
);
bottom_diff
);
}));
}));
cudaError_t
err
=
cudaGetLastError
();
THCudaCheck
(
cudaGetLastError
());
if
(
cudaSuccess
!=
err
)
{
fprintf
(
stderr
,
"cudaCheckError() failed : %s
\n
"
,
cudaGetErrorString
(
err
));
exit
(
-
1
);
}
return
1
;
return
1
;
}
}
mmdet/ops/roi_pool/functions/roi_pool.py
View file @
ba73bcc5
...
@@ -24,9 +24,8 @@ class RoIPoolFunction(Function):
...
@@ -24,9 +24,8 @@ class RoIPoolFunction(Function):
num_channels
=
features
.
size
(
1
)
num_channels
=
features
.
size
(
1
)
num_rois
=
rois
.
size
(
0
)
num_rois
=
rois
.
size
(
0
)
out_size
=
(
num_rois
,
num_channels
,
out_h
,
out_w
)
out_size
=
(
num_rois
,
num_channels
,
out_h
,
out_w
)
output
=
features
.
new_zeros
(
*
out_size
)
output
=
features
.
new_zeros
(
out_size
)
argmax
=
features
.
new_zeros
(
out_size
,
dtype
=
torch
.
int
)
argmax
=
features
.
new_zeros
(
*
out_size
,
dtype
=
torch
.
int
)
roi_pool_cuda
.
forward
(
features
,
rois
,
out_h
,
out_w
,
spatial_scale
,
roi_pool_cuda
.
forward
(
features
,
rois
,
out_h
,
out_w
,
spatial_scale
,
output
,
argmax
)
output
,
argmax
)
ctx
.
spatial_scale
=
spatial_scale
ctx
.
spatial_scale
=
spatial_scale
...
@@ -46,9 +45,9 @@ class RoIPoolFunction(Function):
...
@@ -46,9 +45,9 @@ class RoIPoolFunction(Function):
grad_input
=
grad_rois
=
None
grad_input
=
grad_rois
=
None
if
ctx
.
needs_input_grad
[
0
]:
if
ctx
.
needs_input_grad
[
0
]:
grad_input
=
grad_output
.
new
(
feature_size
)
.
zero_
()
grad_input
=
grad_output
.
new
_zeros
(
feature_size
)
roi_pool_cuda
.
backward
(
grad_output
,
rois
,
argmax
,
spatial_scale
,
roi_pool_cuda
.
backward
(
grad_output
.
contiguous
()
,
rois
,
argmax
,
grad_input
)
spatial_scale
,
grad_input
)
return
grad_input
,
grad_rois
,
None
,
None
return
grad_input
,
grad_rois
,
None
,
None
...
...
mmdet/ops/roi_pool/src/roi_pool_cuda.cpp
View file @
ba73bcc5
#include <torch/
torch
.h>
#include <torch/
extension
.h>
#include <cmath>
#include <cmath>
#include <vector>
#include <vector>
...
...
mmdet/ops/roi_pool/src/roi_pool_kernel.cu
View file @
ba73bcc5
#include <ATen/ATen.h>
#include <ATen/ATen.h>
#include <THC/THCAtomics.cuh>
#include <THC/THCAtomics.cuh>
using
namespace
at
;
// temporal fix for pytorch<=0.4.1 (see #9848)
#define CUDA_1D_KERNEL_LOOP(i, n) \
#define CUDA_1D_KERNEL_LOOP(i, n) \
for (int i = blockIdx.x * blockDim.x + threadIdx.x; i < n; \
for (int i = blockIdx.x * blockDim.x + threadIdx.x; i < n; \
i += blockDim.x * gridDim.x)
i += blockDim.x * gridDim.x)
...
@@ -100,11 +98,7 @@ int ROIPoolForwardLaucher(const at::Tensor features, const at::Tensor rois,
...
@@ -100,11 +98,7 @@ int ROIPoolForwardLaucher(const at::Tensor features, const at::Tensor rois,
channels
,
height
,
width
,
pooled_h
,
pooled_w
,
top_data
,
channels
,
height
,
width
,
pooled_h
,
pooled_w
,
top_data
,
argmax_data
);
argmax_data
);
}));
}));
cudaError_t
err
=
cudaGetLastError
();
THCudaCheck
(
cudaGetLastError
());
if
(
cudaSuccess
!=
err
)
{
fprintf
(
stderr
,
"cudaCheckError() failed : %s
\n
"
,
cudaGetErrorString
(
err
));
exit
(
-
1
);
}
return
1
;
return
1
;
}
}
...
@@ -139,8 +133,7 @@ int ROIPoolBackwardLaucher(const at::Tensor top_grad, const at::Tensor rois,
...
@@ -139,8 +133,7 @@ int ROIPoolBackwardLaucher(const at::Tensor top_grad, const at::Tensor rois,
const
int
pooled_w
,
at
::
Tensor
bottom_grad
)
{
const
int
pooled_w
,
at
::
Tensor
bottom_grad
)
{
const
int
output_size
=
num_rois
*
pooled_h
*
pooled_w
*
channels
;
const
int
output_size
=
num_rois
*
pooled_h
*
pooled_w
*
channels
;
// TODO: use AT_DISPATCH_FLOATING_TYPES_AND_HALF when atomicAdd is resolved
AT_DISPATCH_FLOATING_TYPES_AND_HALF
(
AT_DISPATCH_FLOATING_TYPES
(
top_grad
.
type
(),
"ROIPoolLaucherBackward"
,
([
&
]
{
top_grad
.
type
(),
"ROIPoolLaucherBackward"
,
([
&
]
{
const
scalar_t
*
top_diff
=
top_grad
.
data
<
scalar_t
>
();
const
scalar_t
*
top_diff
=
top_grad
.
data
<
scalar_t
>
();
const
scalar_t
*
rois_data
=
rois
.
data
<
scalar_t
>
();
const
scalar_t
*
rois_data
=
rois
.
data
<
scalar_t
>
();
...
@@ -158,11 +151,6 @@ int ROIPoolBackwardLaucher(const at::Tensor top_grad, const at::Tensor rois,
...
@@ -158,11 +151,6 @@ int ROIPoolBackwardLaucher(const at::Tensor top_grad, const at::Tensor rois,
scalar_t
(
spatial_scale
),
channels
,
height
,
width
,
pooled_h
,
scalar_t
(
spatial_scale
),
channels
,
height
,
width
,
pooled_h
,
pooled_w
,
bottom_diff
);
pooled_w
,
bottom_diff
);
}));
}));
cudaError_t
err
=
cudaGetLastError
();
THCudaCheck
(
cudaGetLastError
());
if
(
cudaSuccess
!=
err
)
{
fprintf
(
stderr
,
"cudaCheckError() failed : %s
\n
"
,
cudaGetErrorString
(
err
));
exit
(
-
1
);
}
return
1
;
return
1
;
}
}
setup.py
View file @
ba73bcc5
...
@@ -11,8 +11,8 @@ def readme():
...
@@ -11,8 +11,8 @@ def readme():
MAJOR
=
0
MAJOR
=
0
MINOR
=
5
MINOR
=
6
PATCH
=
7
PATCH
=
'rc0'
SUFFIX
=
''
SUFFIX
=
''
SHORT_VERSION
=
'{}.{}.{}{}'
.
format
(
MAJOR
,
MINOR
,
PATCH
,
SUFFIX
)
SHORT_VERSION
=
'{}.{}.{}{}'
.
format
(
MAJOR
,
MINOR
,
PATCH
,
SUFFIX
)
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment