Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
ModelZoo
SOLOv2-pytorch
Commits
8e5bfd8b
Unverified
Commit
8e5bfd8b
authored
Oct 11, 2018
by
Kai Chen
Committed by
GitHub
Oct 11, 2018
Browse files
Merge pull request #14 from OceanPang/dev
update fast rcnn configs
parents
d13997c3
15e538f9
Changes
4
Show whitespace changes
Inline
Side-by-side
Showing
4 changed files
with
252 additions
and
4 deletions
+252
-4
configs/fast_mask_rcnn_r50_fpn_1x.py
configs/fast_mask_rcnn_r50_fpn_1x.py
+132
-0
configs/fast_rcnn_r50_fpn_1x.py
configs/fast_rcnn_r50_fpn_1x.py
+118
-0
configs/faster_rcnn_r50_fpn_1x.py
configs/faster_rcnn_r50_fpn_1x.py
+1
-2
configs/mask_rcnn_r50_fpn_1x.py
configs/mask_rcnn_r50_fpn_1x.py
+1
-2
No files found.
configs/fast_mask_rcnn_r50_fpn_1x.py
0 → 100644
View file @
8e5bfd8b
# model settings
model
=
dict
(
type
=
'FastRCNN'
,
pretrained
=
'modelzoo://resnet50'
,
backbone
=
dict
(
type
=
'ResNet'
,
depth
=
50
,
num_stages
=
4
,
out_indices
=
(
0
,
1
,
2
,
3
),
frozen_stages
=
1
,
style
=
'pytorch'
),
neck
=
dict
(
type
=
'FPN'
,
in_channels
=
[
256
,
512
,
1024
,
2048
],
out_channels
=
256
,
num_outs
=
5
),
bbox_roi_extractor
=
dict
(
type
=
'SingleRoIExtractor'
,
roi_layer
=
dict
(
type
=
'RoIAlign'
,
out_size
=
7
,
sample_num
=
2
),
out_channels
=
256
,
featmap_strides
=
[
4
,
8
,
16
,
32
]),
bbox_head
=
dict
(
type
=
'SharedFCRoIHead'
,
num_fcs
=
2
,
in_channels
=
256
,
fc_out_channels
=
1024
,
roi_feat_size
=
7
,
num_classes
=
81
,
target_means
=
[
0.
,
0.
,
0.
,
0.
],
target_stds
=
[
0.1
,
0.1
,
0.2
,
0.2
],
reg_class_agnostic
=
False
),
mask_roi_extractor
=
dict
(
type
=
'SingleRoIExtractor'
,
roi_layer
=
dict
(
type
=
'RoIAlign'
,
out_size
=
14
,
sample_num
=
2
),
out_channels
=
256
,
featmap_strides
=
[
4
,
8
,
16
,
32
]),
mask_head
=
dict
(
type
=
'FCNMaskHead'
,
num_convs
=
4
,
in_channels
=
256
,
conv_out_channels
=
256
,
num_classes
=
81
))
# model training and testing settings
train_cfg
=
dict
(
rcnn
=
dict
(
mask_size
=
28
,
pos_iou_thr
=
0.5
,
neg_iou_thr
=
0.5
,
crowd_thr
=
1.1
,
roi_batch_size
=
512
,
add_gt_as_proposals
=
True
,
pos_fraction
=
0.25
,
pos_balance_sampling
=
False
,
neg_pos_ub
=
512
,
neg_balance_thr
=
0
,
min_pos_iou
=
0.5
,
pos_weight
=-
1
,
debug
=
False
))
test_cfg
=
dict
(
rcnn
=
dict
(
score_thr
=
0.05
,
max_per_img
=
100
,
nms_thr
=
0.5
,
mask_thr_binary
=
0.5
))
# dataset settings
dataset_type
=
'CocoDataset'
data_root
=
'data/coco/'
img_norm_cfg
=
dict
(
mean
=
[
123.675
,
116.28
,
103.53
],
std
=
[
58.395
,
57.12
,
57.375
],
to_rgb
=
True
)
data
=
dict
(
imgs_per_gpu
=
2
,
workers_per_gpu
=
2
,
train
=
dict
(
type
=
dataset_type
,
ann_file
=
data_root
+
'annotations/instances_train2017.json'
,
img_prefix
=
data_root
+
'train2017/'
,
img_scale
=
(
1333
,
800
),
img_norm_cfg
=
img_norm_cfg
,
size_divisor
=
32
,
proposal_file
=
data_root
+
'proposals/train2017_r50_fpn_rpn_1x.pkl'
,
flip_ratio
=
0.5
,
with_mask
=
True
,
with_crowd
=
True
,
with_label
=
True
),
val
=
dict
(
type
=
dataset_type
,
ann_file
=
data_root
+
'annotations/instances_val2017.json'
,
img_prefix
=
data_root
+
'val2017/'
,
img_scale
=
(
1333
,
800
),
img_norm_cfg
=
img_norm_cfg
,
proposal_file
=
data_root
+
'proposals/val2017_r50_fpn_rpn_1x.pkl'
,
size_divisor
=
32
,
flip_ratio
=
0
,
with_mask
=
True
,
with_crowd
=
True
,
with_label
=
True
),
test
=
dict
(
type
=
dataset_type
,
ann_file
=
data_root
+
'annotations/instances_val2017.json'
,
img_prefix
=
data_root
+
'val2017/'
,
img_scale
=
(
1333
,
800
),
img_norm_cfg
=
img_norm_cfg
,
proposal_file
=
data_root
+
'proposals/val2017_r50_fpn_rpn_1x.pkl'
,
size_divisor
=
32
,
flip_ratio
=
0
,
with_mask
=
False
,
with_label
=
False
,
test_mode
=
True
))
# optimizer
optimizer
=
dict
(
type
=
'SGD'
,
lr
=
0.02
,
momentum
=
0.9
,
weight_decay
=
0.0001
)
optimizer_config
=
dict
(
grad_clip
=
dict
(
max_norm
=
35
,
norm_type
=
2
))
# learning policy
lr_config
=
dict
(
policy
=
'step'
,
warmup
=
'linear'
,
warmup_iters
=
500
,
warmup_ratio
=
1.0
/
3
,
step
=
[
8
,
11
])
checkpoint_config
=
dict
(
interval
=
1
)
# yapf:disable
log_config
=
dict
(
interval
=
50
,
hooks
=
[
dict
(
type
=
'TextLoggerHook'
),
# dict(type='TensorboardLoggerHook')
])
# yapf:enable
# runtime settings
total_epochs
=
12
dist_params
=
dict
(
backend
=
'nccl'
)
log_level
=
'INFO'
work_dir
=
'./work_dirs/fast_mask_rcnn_r50_fpn_1x'
load_from
=
None
resume_from
=
None
workflow
=
[(
'train'
,
1
)]
configs/fast_rcnn_r50_fpn_1x.py
0 → 100644
View file @
8e5bfd8b
# model settings
model
=
dict
(
type
=
'FastRCNN'
,
pretrained
=
'modelzoo://resnet50'
,
backbone
=
dict
(
type
=
'ResNet'
,
depth
=
50
,
num_stages
=
4
,
out_indices
=
(
0
,
1
,
2
,
3
),
frozen_stages
=
1
,
style
=
'pytorch'
),
neck
=
dict
(
type
=
'FPN'
,
in_channels
=
[
256
,
512
,
1024
,
2048
],
out_channels
=
256
,
num_outs
=
5
),
bbox_roi_extractor
=
dict
(
type
=
'SingleRoIExtractor'
,
roi_layer
=
dict
(
type
=
'RoIAlign'
,
out_size
=
7
,
sample_num
=
2
),
out_channels
=
256
,
featmap_strides
=
[
4
,
8
,
16
,
32
]),
bbox_head
=
dict
(
type
=
'SharedFCRoIHead'
,
num_fcs
=
2
,
in_channels
=
256
,
fc_out_channels
=
1024
,
roi_feat_size
=
7
,
num_classes
=
81
,
target_means
=
[
0.
,
0.
,
0.
,
0.
],
target_stds
=
[
0.1
,
0.1
,
0.2
,
0.2
],
reg_class_agnostic
=
False
))
# model training and testing settings
train_cfg
=
dict
(
rcnn
=
dict
(
pos_iou_thr
=
0.5
,
neg_iou_thr
=
0.5
,
crowd_thr
=
1.1
,
roi_batch_size
=
512
,
add_gt_as_proposals
=
True
,
pos_fraction
=
0.25
,
pos_balance_sampling
=
False
,
neg_pos_ub
=
512
,
neg_balance_thr
=
0
,
min_pos_iou
=
0.5
,
pos_weight
=-
1
,
debug
=
False
))
test_cfg
=
dict
(
rcnn
=
dict
(
score_thr
=
0.05
,
max_per_img
=
100
,
nms_thr
=
0.5
))
# dataset settings
dataset_type
=
'CocoDataset'
data_root
=
'data/coco/'
img_norm_cfg
=
dict
(
mean
=
[
123.675
,
116.28
,
103.53
],
std
=
[
58.395
,
57.12
,
57.375
],
to_rgb
=
True
)
data
=
dict
(
imgs_per_gpu
=
2
,
workers_per_gpu
=
2
,
train
=
dict
(
type
=
dataset_type
,
ann_file
=
data_root
+
'annotations/instances_train2017.json'
,
img_prefix
=
data_root
+
'train2017/'
,
img_scale
=
(
1333
,
800
),
img_norm_cfg
=
img_norm_cfg
,
size_divisor
=
32
,
proposal_file
=
data_root
+
'proposals/train2017_r50_fpn_rpn_1x.pkl'
,
flip_ratio
=
0.5
,
with_mask
=
False
,
with_crowd
=
True
,
with_label
=
True
),
val
=
dict
(
type
=
dataset_type
,
ann_file
=
data_root
+
'annotations/instances_val2017.json'
,
img_prefix
=
data_root
+
'val2017/'
,
img_scale
=
(
1333
,
800
),
img_norm_cfg
=
img_norm_cfg
,
proposal_file
=
data_root
+
'proposals/val2017_r50_fpn_rpn_1x.pkl'
,
size_divisor
=
32
,
flip_ratio
=
0
,
with_mask
=
False
,
with_crowd
=
True
,
with_label
=
True
),
test
=
dict
(
type
=
dataset_type
,
ann_file
=
data_root
+
'annotations/instances_val2017.json'
,
img_prefix
=
data_root
+
'val2017/'
,
img_scale
=
(
1333
,
800
),
img_norm_cfg
=
img_norm_cfg
,
proposal_file
=
data_root
+
'proposals/val2017_r50_fpn_rpn_1x.pkl'
,
size_divisor
=
32
,
flip_ratio
=
0
,
with_mask
=
False
,
with_label
=
False
,
test_mode
=
True
))
# optimizer
optimizer
=
dict
(
type
=
'SGD'
,
lr
=
0.02
,
momentum
=
0.9
,
weight_decay
=
0.0001
)
optimizer_config
=
dict
(
grad_clip
=
dict
(
max_norm
=
35
,
norm_type
=
2
))
# learning policy
lr_config
=
dict
(
policy
=
'step'
,
warmup
=
'linear'
,
warmup_iters
=
500
,
warmup_ratio
=
1.0
/
3
,
step
=
[
8
,
11
])
checkpoint_config
=
dict
(
interval
=
1
)
# yapf:disable
log_config
=
dict
(
interval
=
50
,
hooks
=
[
dict
(
type
=
'TextLoggerHook'
),
# dict(type='TensorboardLoggerHook')
])
# yapf:enable
# runtime settings
total_epochs
=
12
dist_params
=
dict
(
backend
=
'nccl'
)
log_level
=
'INFO'
work_dir
=
'./work_dirs/fast_rcnn_r50_fpn_1x'
load_from
=
None
resume_from
=
None
workflow
=
[(
'train'
,
1
)]
configs/faster_rcnn_r50_fpn_1x.py
View file @
8e5bfd8b
...
@@ -65,7 +65,7 @@ train_cfg = dict(
...
@@ -65,7 +65,7 @@ train_cfg = dict(
pos_balance_sampling
=
False
,
pos_balance_sampling
=
False
,
neg_pos_ub
=
512
,
neg_pos_ub
=
512
,
neg_balance_thr
=
0
,
neg_balance_thr
=
0
,
min_pos_iou
=
1.1
,
min_pos_iou
=
0.5
,
pos_weight
=-
1
,
pos_weight
=-
1
,
debug
=
False
))
debug
=
False
))
test_cfg
=
dict
(
test_cfg
=
dict
(
...
@@ -139,7 +139,6 @@ log_config = dict(
...
@@ -139,7 +139,6 @@ log_config = dict(
# yapf:enable
# yapf:enable
# runtime settings
# runtime settings
total_epochs
=
12
total_epochs
=
12
device_ids
=
range
(
8
)
dist_params
=
dict
(
backend
=
'nccl'
)
dist_params
=
dict
(
backend
=
'nccl'
)
log_level
=
'INFO'
log_level
=
'INFO'
work_dir
=
'./work_dirs/faster_rcnn_r50_fpn_1x'
work_dir
=
'./work_dirs/faster_rcnn_r50_fpn_1x'
...
...
configs/mask_rcnn_r50_fpn_1x.py
View file @
8e5bfd8b
...
@@ -77,7 +77,7 @@ train_cfg = dict(
...
@@ -77,7 +77,7 @@ train_cfg = dict(
pos_balance_sampling
=
False
,
pos_balance_sampling
=
False
,
neg_pos_ub
=
512
,
neg_pos_ub
=
512
,
neg_balance_thr
=
0
,
neg_balance_thr
=
0
,
min_pos_iou
=
1.1
,
min_pos_iou
=
0.5
,
pos_weight
=-
1
,
pos_weight
=-
1
,
debug
=
False
))
debug
=
False
))
test_cfg
=
dict
(
test_cfg
=
dict
(
...
@@ -152,7 +152,6 @@ log_config = dict(
...
@@ -152,7 +152,6 @@ log_config = dict(
# yapf:enable
# yapf:enable
# runtime settings
# runtime settings
total_epochs
=
12
total_epochs
=
12
device_ids
=
range
(
8
)
dist_params
=
dict
(
backend
=
'nccl'
)
dist_params
=
dict
(
backend
=
'nccl'
)
log_level
=
'INFO'
log_level
=
'INFO'
work_dir
=
'./work_dirs/mask_rcnn_r50_fpn_1x'
work_dir
=
'./work_dirs/mask_rcnn_r50_fpn_1x'
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment