Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
ModelZoo
SOLOv2-pytorch
Commits
7fb202b3
Commit
7fb202b3
authored
May 01, 2019
by
Cao Yuhang
Committed by
Kai Chen
May 01, 2019
Browse files
new model zoo (#548)
* new model zoo * update model url and performance * update pytorch version
parent
e1cc6714
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
77 additions
and
77 deletions
+77
-77
MODEL_ZOO.md
MODEL_ZOO.md
+77
-77
No files found.
MODEL_ZOO.md
View file @
7fb202b3
...
...
@@ -10,7 +10,7 @@
### Software environment
-
Python 3.6 / 3.7
-
PyTorch
1.0
-
PyTorch
Nightly
-
CUDA 9.0.176
-
CUDNN 7.0.4
-
NCCL 2.1.15
...
...
@@ -46,108 +46,108 @@ We released RPN, Faster R-CNN and Mask R-CNN models in the first version. More m
| Backbone | Style | Lr schd | Mem (GB) | Train time (s/iter) | Inf time (fps) | AR1000 | Download |
|:--------:|:-------:|:-------:|:--------:|:-------------------:|:--------------:|:------:|:--------:|
| R-50-FPN | caffe | 1x |
4.5
| 0.
379
| 1
4.4
| 58.2 | - |
| R-50-FPN | pytorch | 1x |
4.8
| 0.
407
| 1
4.5
| 57.1 |
[
model
](
https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/rpn_r50_fpn_1x_20181010-4a9c0712.pth
)
|
| R-50-FPN | pytorch | 2x |
4.8
|
0.407
| 14.5
| 57.6 |
[
model
](
https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/rpn_r50_fpn_2x_20181010-88a4a471.pth
)
|
| R-101-FPN | caffe | 1x |
7.4
| 0.
513
| 1
1.1
| 59.4 | - |
| R-101-FPN | pytorch | 1x |
8.0
| 0.
552
| 1
1.1
| 58.6 |
[
model
](
https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/rpn_r101_fpn_1x_20181129-f50da4bd.pth
)
|
| R-101-FPN | pytorch | 2x |
8.0
|
0.552
| 11.1
| 59.1 |
[
model
](
https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/rpn_r101_fpn_2x_20181129-e42c6c9a.pth
)
|
| X-101-32x4d-FPN | pytorch |1x |
9.9
| 0.
691
|
8.3
| 59.4 |
[
model
](
https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/rpn_x101_32x4d_fpn_1x_20181218-7e379d26.pth
)
| X-101-32x4d-FPN | pytorch |2x |
9.9
|
0.691
|
8.3
| 59.9 |
[
model
](
https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/rpn_x101_32x4d_fpn_2x_20181218-0510af40.pth
)
| X-101-64x4d-FPN | pytorch |1x |
14.6
|
1.032
|
6.2
| 59.8 |
[
model
](
https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/rpn_x101_64x4d_fpn_1x_20181218-c1a24f1f.pth
)
| X-101-64x4d-FPN | pytorch |2x |
14.6
| 1.032
|
6.2
| 60.0 |
[
model
](
https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/rpn_x101_64x4d_fpn_2x_20181218-c22bdd70.pth
)
| R-50-FPN | caffe | 1x |
3.3
| 0.
253
| 1
6.9
| 58.2 | - |
| R-50-FPN | pytorch | 1x |
3.5
| 0.
276
| 1
7.7
| 57.1 |
[
model
](
https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/rpn_r50_fpn_1x_20181010-4a9c0712.pth
)
|
| R-50-FPN | pytorch | 2x |
|
|
| 57.6 |
[
model
](
https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/rpn_r50_fpn_2x_20181010-88a4a471.pth
)
|
| R-101-FPN | caffe | 1x |
5.2
| 0.
379
| 1
3.9
| 59.4 | - |
| R-101-FPN | pytorch | 1x |
5.4
| 0.
396
| 1
4.4
| 58.6 |
[
model
](
https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/rpn_r101_fpn_1x_20181129-f50da4bd.pth
)
|
| R-101-FPN | pytorch | 2x |
|
|
| 59.1 |
[
model
](
https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/rpn_r101_fpn_2x_20181129-e42c6c9a.pth
)
|
| X-101-32x4d-FPN | pytorch |1x |
6.6
| 0.
589
|
11.8
| 59.4 |
[
model
](
https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/rpn_x101_32x4d_fpn_1x_20181218-7e379d26.pth
)
| X-101-32x4d-FPN | pytorch |2x |
|
|
| 59.9 |
[
model
](
https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/rpn_x101_32x4d_fpn_2x_20181218-0510af40.pth
)
| X-101-64x4d-FPN | pytorch |1x |
9.5
|
0.955
|
8.3
| 59.8 |
[
model
](
https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/rpn_x101_64x4d_fpn_1x_20181218-c1a24f1f.pth
)
| X-101-64x4d-FPN | pytorch |2x |
|
|
| 60.0 |
[
model
](
https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/rpn_x101_64x4d_fpn_2x_20181218-c22bdd70.pth
)
### Faster R-CNN
| Backbone | Style | Lr schd | Mem (GB) | Train time (s/iter) | Inf time (fps) | box AP | Download |
|:--------:|:-------:|:-------:|:--------:|:-------------------:|:--------------:|:------:|:--------:|
| R-50-FPN | caffe | 1x |
4.9
| 0.
525
| 1
0.0
| 36.7 | - |
| R-50-FPN | pytorch | 1x |
5.1
| 0.
554
|
9.9
| 36.4 |
[
model
](
https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/faster_rcnn_r50_fpn_1x_20181010-3d1b3351.pth
)
|
| R-50-FPN | pytorch | 2x |
5.1
|
0.554
| 9.9
| 37.7 |
[
model
](
https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/faster_rcnn_r50_fpn_2x_20181010-443129e1.pth
)
|
| R-101-FPN | caffe | 1x |
7.4
| 0.
663
|
8.4
| 38.8 | - |
| R-101-FPN | pytorch | 1x |
8.0
| 0.
698
|
8.3
| 38.6 |
[
model
](
https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/faster_rcnn_r101_fpn_1x_20181129-d1468807.pth
)
|
| R-101-FPN | pytorch | 2x |
8.0
|
0.698
| 8.3
| 39.4 |
[
model
](
https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/faster_rcnn_r101_fpn_2x_20181129-73e7ade7.pth
)
|
| X-101-32x4d-FPN | pytorch | 1x|
9
.9 | 0.
84
2 |
7.0
| 40.2 |
[
model
](
https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/faster_rcnn_x101_32x4d_fpn_1x_20181218-ad81c133.pth
)
| X-101-32x4d-FPN | pytorch | 2x|
9.9
|
0.842
| 7.0
| 40.5 |
[
model
](
https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/faster_rcnn_x101_32x4d_fpn_2x_20181218-0ed58946.pth
)
| X-101-64x4d-FPN | pytorch | 1x|
14.1
| 1.
181
|
5.2
| 41.3 |
[
model
](
https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/faster_rcnn_x101_64x4d_fpn_1x_20181218-c9c69c8f.pth
)
| X-101-64x4d-FPN | pytorch | 2x|
14.1
| 1.181
|
5.2
| 40.7 |
[
model
](
https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/faster_rcnn_x101_64x4d_fpn_2x_20181218-fe94f9b8.pth
)
| R-50-FPN | caffe | 1x |
3.6
| 0.
333
| 1
2.9
| 36.7 | - |
| R-50-FPN | pytorch | 1x |
3.8
| 0.
353
|
12.5
| 36.4 |
[
model
](
https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/faster_rcnn_r50_fpn_1x_20181010-3d1b3351.pth
)
|
| R-50-FPN | pytorch | 2x |
|
|
| 37.7 |
[
model
](
https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/faster_rcnn_r50_fpn_2x_20181010-443129e1.pth
)
|
| R-101-FPN | caffe | 1x |
5.5
| 0.
465
|
10.7
| 38.8 | - |
| R-101-FPN | pytorch | 1x |
5.7
| 0.
474
|
10.8
| 38.6 |
[
model
](
https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/faster_rcnn_r101_fpn_1x_20181129-d1468807.pth
)
|
| R-101-FPN | pytorch | 2x |
|
|
| 39.4 |
[
model
](
https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/faster_rcnn_r101_fpn_2x_20181129-73e7ade7.pth
)
|
| X-101-32x4d-FPN | pytorch | 1x|
6
.9 | 0.
67
2 |
9.3
| 40.2 |
[
model
](
https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/faster_rcnn_x101_32x4d_fpn_1x_20181218-ad81c133.pth
)
| X-101-32x4d-FPN | pytorch | 2x|
|
|
| 40.5 |
[
model
](
https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/faster_rcnn_x101_32x4d_fpn_2x_20181218-0ed58946.pth
)
| X-101-64x4d-FPN | pytorch | 1x|
9.8
| 1.
040
|
7.1
| 41.3 |
[
model
](
https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/faster_rcnn_x101_64x4d_fpn_1x_20181218-c9c69c8f.pth
)
| X-101-64x4d-FPN | pytorch | 2x|
|
|
| 40.7 |
[
model
](
https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/faster_rcnn_x101_64x4d_fpn_2x_20181218-fe94f9b8.pth
)
### Mask R-CNN
| Backbone | Style | Lr schd | Mem (GB) | Train time (s/iter) | Inf time (fps) | box AP | mask AP | Download |
|:--------:|:-------:|:-------:|:--------:|:-------------------:|:--------------:|:------:|:-------:|:--------:|
| R-50-FPN | caffe | 1x |
5.9
| 0.
658
|
7.7
| 37.5 | 34.4 | - |
| R-50-FPN | pytorch | 1x |
5.8
| 0.
690
|
7.7
| 37.3 | 34.2 |
[
model
](
https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/mask_rcnn_r50_fpn_1x_20181010-069fa190.pth
)
|
| R-50-FPN | pytorch | 2x |
5.8
|
0.690
| 7.7
| 38.6 | 35.1 |
[
model
](
https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/mask_rcnn_r50_fpn_2x_20181010-41d35c05.pth
)
|
| R-101-FPN | caffe | 1x |
8.8
| 0.
791
|
7.0
| 39.9 | 36.1 | - |
| R-101-FPN | pytorch | 1x |
9.1
| 0.
825
|
6.7
| 39.4 | 35.9 |
[
model
](
https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/mask_rcnn_r101_fpn_1x_20181129-34ad1961.pth
)
|
| R-101-FPN | pytorch | 2x |
9.1
|
0.825
| 6.7
| 40.4 | 36.6 |
[
model
](
https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/mask_rcnn_r101_fpn_2x_20181129-a254bdfc.pth
)
|
| X-101-32x4d-FPN | pytorch | 1x|
10.9
| 0.
972
|
5.8
| 41.2 | 37.2 |
[
model
](
https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/mask_rcnn_x101_32x4d_fpn_1x_20181218-44e635cc.pth
)
| X-101-32x4d-FPN | pytorch | 2x|
10.9
| 0.972
|
5.8
| 41.4 | 37.1 |
[
model
](
https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/mask_rcnn_x101_32x4d_fpn_2x_20181218-f023dffa.pth
)
| X-101-64x4d-FPN | pytorch | 1x| 1
4.1
| 1.
3
02 |
4.7
| 42.2 | 38.1 |
[
model
](
https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/mask_rcnn_x101_64x4d_fpn_1x_20181218-cb159987.pth
)
| X-101-64x4d-FPN | pytorch | 2x|
14.1
| 1.302
|
4.7
| 42.0 | 37.8 |
[
model
](
https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/mask_rcnn_x101_64x4d_fpn_2x_20181218-ea936e44.pth
)
| R-50-FPN | caffe | 1x |
3.8
| 0.
430
|
9.9
| 37.5 | 34.4 | - |
| R-50-FPN | pytorch | 1x |
3.9
| 0.
453
|
9.6
| 37.3 | 34.2 |
[
model
](
https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/mask_rcnn_r50_fpn_1x_20181010-069fa190.pth
)
|
| R-50-FPN | pytorch | 2x |
|
|
| 38.6 | 35.1 |
[
model
](
https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/mask_rcnn_r50_fpn_2x_20181010-41d35c05.pth
)
|
| R-101-FPN | caffe | 1x |
5.7
| 0.
534
|
8.8
| 39.9 | 36.1 | - |
| R-101-FPN | pytorch | 1x |
5.8
| 0.
571
|
8.9
| 39.4 | 35.9 |
[
model
](
https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/mask_rcnn_r101_fpn_1x_20181129-34ad1961.pth
)
|
| R-101-FPN | pytorch | 2x |
|
|
| 40.4 | 36.6 |
[
model
](
https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/mask_rcnn_r101_fpn_2x_20181129-a254bdfc.pth
)
|
| X-101-32x4d-FPN | pytorch | 1x|
7.1
| 0.
759
|
7.9
| 41.2 | 37.2 |
[
model
](
https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/mask_rcnn_x101_32x4d_fpn_1x_20181218-44e635cc.pth
)
| X-101-32x4d-FPN | pytorch | 2x|
|
|
| 41.4 | 37.1 |
[
model
](
https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/mask_rcnn_x101_32x4d_fpn_2x_20181218-f023dffa.pth
)
| X-101-64x4d-FPN | pytorch | 1x| 1
0.0
| 1.
1
02 |
5.8
| 42.2 | 38.1 |
[
model
](
https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/mask_rcnn_x101_64x4d_fpn_1x_20181218-cb159987.pth
)
| X-101-64x4d-FPN | pytorch | 2x|
|
|
| 42.0 | 37.8 |
[
model
](
https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/mask_rcnn_x101_64x4d_fpn_2x_20181218-ea936e44.pth
)
### Fast R-CNN (with pre-computed proposals)
| Backbone | Style | Type | Lr schd | Mem (GB) | Train time (s/iter) | Inf time (fps) | box AP | mask AP | Download |
|:--------:|:-------:|:------:|:-------:|:--------:|:-------------------:|:--------------:|:------:|:-------:|:--------:|
| R-50-FPN | caffe | Faster | 1x | 3.
5
| 0.
348
| 1
4.6
| 36.6 | - | - |
| R-50-FPN | pytorch | Faster | 1x |
4.0
| 0.
375
| 1
4
.5 | 35.8 | - |
[
model
](
https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/fast_rcnn_r50_fpn_1x_20181010-08160859.pth
)
|
| R-50-FPN | pytorch | Faster | 2x |
4.0
|
0.375
| 14.5
| 37.1 | - |
[
model
](
https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/fast_rcnn_r50_fpn_2x_20181010-d263ada5.pth
)
|
| R-101-FPN| caffe | Faster | 1x |
7.1
| 0.
484
| 1
1.9
| 38.
4
| - | - |
| R-101-FPN| pytorch | Faster | 1x |
7.6
| 0.
540
| 1
1.8
| 38.1 | - |
[
model
](
https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/fast_rcnn_r101_fpn_1x_20181129-ffaa2eb0.pth
)
|
| R-101-FPN| pytorch | Faster | 2x |
7.6
|
0.540
| 11.8
| 38.8 | - |
[
model
](
https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/fast_rcnn_r101_fpn_2x_20181129-9dba92ce.pth
)
|
| R-50-FPN | caffe | Mask | 1x |
5
.4 | 0.
473
| 1
0.7
| 37.3 | 34.5 | - |
| R-50-FPN | pytorch | Mask | 1x |
5.3
| 0.
504
| 1
0.6
| 36.8 | 34.1 |
[
model
](
https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/fast_mask_rcnn_r50_fpn_1x_20181010-e030a38f.pth
)
|
| R-50-FPN | pytorch | Mask | 2x |
5.3
|
0.504
| 10.6
| 37.9 | 34.8 |
[
model
](
https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/fast_mask_rcnn_r50_fpn_2x_20181010-5048cb03.pth
)
|
| R-101-FPN| caffe | Mask | 1x |
8.6
| 0.
607
|
9.5
| 39.4 | 36.1 | - |
| R-101-FPN| pytorch | Mask | 1x |
9.0
| 0.
656
|
9.3
| 38.9 | 35.8 |
[
model
](
https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/fast_mask_rcnn_r101_fpn_1x_20181129-2273fa9b.pth
)
|
| R-101-FPN| pytorch | Mask | 2x |
9.0
|
0.656
|
9.3
| 39.9 | 36.4 |
[
model
](
https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/fast_mask_rcnn_r101_fpn_2x_20181129-bf63ec5e.pth
)
|
| R-50-FPN | caffe | Faster | 1x | 3.
3
| 0.
242
| 1
8.4
| 36.6 | - | - |
| R-50-FPN | pytorch | Faster | 1x |
3.5
| 0.
250
| 1
6
.5 | 35.8 | - |
[
model
](
https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/fast_rcnn_r50_fpn_1x_20181010-08160859.pth
)
|
| R-50-FPN | pytorch | Faster | 2x |
|
|
| 37.1 | - |
[
model
](
https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/fast_rcnn_r50_fpn_2x_20181010-d263ada5.pth
)
|
| R-101-FPN| caffe | Faster | 1x |
5.2
| 0.
355
| 1
4.4
| 38.
6
| - | - |
| R-101-FPN| pytorch | Faster | 1x |
5.4
| 0.
388
| 1
3.2
| 38.1 | - |
[
model
](
https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/fast_rcnn_r101_fpn_1x_20181129-ffaa2eb0.pth
)
|
| R-101-FPN| pytorch | Faster | 2x |
|
|
| 38.8 | - |
[
model
](
https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/fast_rcnn_r101_fpn_2x_20181129-9dba92ce.pth
)
|
| R-50-FPN | caffe | Mask | 1x |
3
.4 | 0.
328
| 1
2.8
| 37.3 | 34.5 | - |
| R-50-FPN | pytorch | Mask | 1x |
3.5
| 0.
346
| 1
2.7
| 36.8 | 34.1 |
[
model
](
https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/fast_mask_rcnn_r50_fpn_1x_20181010-e030a38f.pth
)
|
| R-50-FPN | pytorch | Mask | 2x |
|
|
| 37.9 | 34.8 |
[
model
](
https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/fast_mask_rcnn_r50_fpn_2x_20181010-5048cb03.pth
)
|
| R-101-FPN| caffe | Mask | 1x |
5.2
| 0.
429
|
11.2
| 39.4 | 36.1 | - |
| R-101-FPN| pytorch | Mask | 1x |
5.4
| 0.
462
|
10.9
| 38.9 | 35.8 |
[
model
](
https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/fast_mask_rcnn_r101_fpn_1x_20181129-2273fa9b.pth
)
|
| R-101-FPN| pytorch | Mask | 2x |
|
|
| 39.9 | 36.4 |
[
model
](
https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/fast_mask_rcnn_r101_fpn_2x_20181129-bf63ec5e.pth
)
|
### RetinaNet
| Backbone | Style | Lr schd | Mem (GB) | Train time (s/iter) | Inf time (fps) | box AP | Download |
|:--------:|:-------:|:-------:|:--------:|:-------------------:|:--------------:|:------:|:--------:|
| R-50-FPN | caffe | 1x |
6.7
| 0.
468
|
9.4
| 35.8 | - |
| R-50-FPN | pytorch | 1x |
6.9
| 0.
496
|
9
.1 | 35.6 |
[
model
](
https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/retinanet_r50_fpn_1x_20181125-
7b0c2548
.pth
)
|
| R-50-FPN | pytorch | 2x |
6.9
|
0.496
|
9.1
| 36.5 |
[
model
](
https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/retinanet_r50_fpn_2x_20181125-
8b724df2
.pth
)
|
| R-101-FPN | caffe | 1x |
9.2
| 0.
614
|
8.2
| 37.8 | - |
| R-101-FPN | pytorch | 1x |
9.6
| 0.
643
|
8.1
| 37.7 |
[
model
](
https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/retinanet_r101_fpn_1x_20181129-f
016f384
.pth
)
|
| R-101-FPN | pytorch | 2x |
9.6
|
0.643
|
8.1
| 38.1 |
[
model
](
https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/retinanet_r101_fpn_2x_20181129-
72c14526
.pth
)
|
| X-101-32x4d-FPN | pytorch | 1x|
10.8
| 0.
79
2 |
6.7
| 3
8.7
|
[
model
](
https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/retinanet_x101_32x4d_fpn_1x_201
81218-c84d7dfc
.pth
)
| X-101-32x4d-FPN | pytorch | 2x|
10.8
| 0.792
|
6.7
| 39.3 |
[
model
](
https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/retinanet_x101_32x4d_fpn_2x_20181218-
8596452d
.pth
)
| X-101-64x4d-FPN | pytorch | 1x|
14
.6 |
1.128
|
5.3
| 40.0 |
[
model
](
https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/retinanet_x101_64x4d_fpn_1x_20181218-
a0a22662
.pth
)
| X-101-64x4d-FPN | pytorch | 2x|
14.6
| 1.128
|
5.3
| 39.6 |
[
model
](
https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/retinanet_x101_64x4d_fpn_2x_20181218-
5e88d04
5.pth
)
| R-50-FPN | caffe | 1x |
3.4
| 0.
285
|
12.5
| 35.8 | - |
| R-50-FPN | pytorch | 1x |
3.6
| 0.
308
|
12
.1 | 35.6 |
[
model
](
https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/retinanet_r50_fpn_1x_20181125-
3d3c2142
.pth
)
|
| R-50-FPN | pytorch | 2x |
|
|
| 36.5 |
[
model
](
https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/retinanet_r50_fpn_2x_20181125-
e0dbec97
.pth
)
|
| R-101-FPN | caffe | 1x |
5.3
| 0.
410
|
10.4
| 37.8 | - |
| R-101-FPN | pytorch | 1x |
5.5
| 0.
429
|
10.9
| 37.7 |
[
model
](
https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/retinanet_r101_fpn_1x_20181129-f
738a02f
.pth
)
|
| R-101-FPN | pytorch | 2x |
|
|
| 38.1 |
[
model
](
https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/retinanet_r101_fpn_2x_20181129-
f654534b
.pth
)
|
| X-101-32x4d-FPN | pytorch | 1x|
6.7
| 0.
63
2 |
9.3
| 3
9.0
|
[
model
](
https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/retinanet_x101_32x4d_fpn_1x_201
90501-967812ba
.pth
)
| X-101-32x4d-FPN | pytorch | 2x|
|
|
| 39.3 |
[
model
](
https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/retinanet_x101_32x4d_fpn_2x_20181218-
605dcd0a
.pth
)
| X-101-64x4d-FPN | pytorch | 1x|
9
.6
|
0.993
|
7.0
| 40.0 |
[
model
](
https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/retinanet_x101_64x4d_fpn_1x_20181218-
2f6f778b
.pth
)
| X-101-64x4d-FPN | pytorch | 2x|
|
|
| 39.6 |
[
model
](
https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/retinanet_x101_64x4d_fpn_2x_20181218-
2f598dc
5.pth
)
### Cascade R-CNN
| Backbone | Style | Lr schd | Mem (GB) | Train time (s/iter) | Inf time (fps) | box AP | Download |
|:--------:|:-------:|:-------:|:--------:|:-------------------:|:--------------:|:------:|:--------:|
| R-50-FPN | caffe | 1x |
5.0
| 0.
592
|
8.1
| 40.
3
| - |
| R-50-FPN | pytorch | 1x |
5.5
| 0.
622
|
8.0
| 40.
3
|
[
model
](
https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/cascade_rcnn_r50_fpn_1x_201
81123-b1987c4a
.pth
)
|
| R-50-FPN | pytorch | 20e |
5.5
|
0.622
| 8.0
| 41.1 |
[
model
](
https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/cascade_rcnn_r50_fpn_20e_20181123-db483a09.pth
)
|
| R-101-FPN | caffe | 1x |
8.5
| 0.
731
|
7.0
| 42.
2
| - |
| R-101-FPN | pytorch | 1x |
8.7
| 0.
766
|
6.9
| 42.1 |
[
model
](
https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/cascade_rcnn_r101_fpn_1x_20181129-d64ebac7.pth
)
|
| R-101-FPN | pytorch | 20e |
8.7
|
0.766
| 6.9
| 42.6 |
[
model
](
https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/cascade_rcnn_r101_fpn_20e_20181129-b46dcede.pth
)
|
| X-101-32x4d-FPN | pytorch | 1x|
10.6
| 0.
902
|
5.7
| 43.
5
|
[
model
](
https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/cascade_rcnn_x101_32x4d_fpn_1x_201
81218-941c092
5.pth
)
| X-101-32x4d-FPN | pytorch |20e|
10.6
| 0.902
|
5.7
| 44.1 |
[
model
](
https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/cascade_rcnn_x101_32x4d_fpn_2x_20181218-28f73c4c.pth
)
| X-101-64x4d-FPN | pytorch | 1x| 1
4.1
| 1.
251
|
4.6
| 44.6 |
[
model
](
https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/cascade_rcnn_x101_64x4d_fpn_1x_20181218-e2dc376a.pth
)
| X-101-64x4d-FPN | pytorch |20e|
14.1
| 1.251
|
4.6
| 44.8 |
[
model
](
https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/cascade_rcnn_x101_64x4d_fpn_2x_20181218-5add321e.pth
)
| R-50-FPN | caffe | 1x |
3.9
| 0.
464
|
9.7
| 40.
6
| - |
| R-50-FPN | pytorch | 1x |
4.1
| 0.
455
|
10.1
| 40.
5
|
[
model
](
https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/cascade_rcnn_r50_fpn_1x_201
90501-3b6211ab
.pth
)
|
| R-50-FPN | pytorch | 20e |
|
|
| 41.1 |
[
model
](
https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/cascade_rcnn_r50_fpn_20e_20181123-db483a09.pth
)
|
| R-101-FPN | caffe | 1x |
5.8
| 0.
569
|
8.7
| 42.
5
| - |
| R-101-FPN | pytorch | 1x |
6.0
| 0.
584
|
8.7
| 42.1 |
[
model
](
https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/cascade_rcnn_r101_fpn_1x_20181129-d64ebac7.pth
)
|
| R-101-FPN | pytorch | 20e |
|
|
| 42.6 |
[
model
](
https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/cascade_rcnn_r101_fpn_20e_20181129-b46dcede.pth
)
|
| X-101-32x4d-FPN | pytorch | 1x|
7.2
| 0.
770
|
7.8
| 43.
7
|
[
model
](
https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/cascade_rcnn_x101_32x4d_fpn_1x_201
90501-af628be
5.pth
)
| X-101-32x4d-FPN | pytorch |20e|
|
|
| 44.1 |
[
model
](
https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/cascade_rcnn_x101_32x4d_fpn_2x_20181218-28f73c4c.pth
)
| X-101-64x4d-FPN | pytorch | 1x| 1
0.0
| 1.
133
|
6.1
| 44.6 |
[
model
](
https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/cascade_rcnn_x101_64x4d_fpn_1x_20181218-e2dc376a.pth
)
| X-101-64x4d-FPN | pytorch |20e|
|
|
| 44.8 |
[
model
](
https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/cascade_rcnn_x101_64x4d_fpn_2x_20181218-5add321e.pth
)
### Cascade Mask R-CNN
| Backbone | Style | Lr schd | Mem (GB) | Train time (s/iter) | Inf time (fps) | box AP | mask AP | Download |
|:--------:|:-------:|:-------:|:--------:|:-------------------:|:--------------:|:------:|:-------:|:--------:|
| R-50-FPN | caffe | 1x |
7.5
| 0.
880
|
5.8
| 41.0 | 35.6 | - |
| R-50-FPN | pytorch | 1x |
7.6
| 0.
910
|
5.7
| 41.3 | 35.7 |
[
model
](
https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/cascade_mask_rcnn_r50_fpn_1x_20181123-88b170c9.pth
)
|
| R-50-FPN | pytorch | 20e |
7.6
|
0.910
| 5.7
| 42.4 | 36.6 |
[
model
](
https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/cascade_mask_rcnn_r50_fpn_20e_20181123-6e0c9713.pth
)
|
| R-101-FPN | caffe | 1x |
10.5
|
1.024
|
5
.3 | 43.1 | 37.3 | - |
| R-101-FPN | pytorch | 1x |
10.9
|
1.055
|
5.2
| 42.7 | 37.1 |
[
model
](
https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/cascade_mask_rcnn_r101_fpn_1x_20181129-64f00602.pth
)
|
| R-101-FPN | pytorch | 20e |
10.9
|
1.055
|
5.2
| 43.4 | 37.6 |
[
model
](
https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/cascade_mask_rcnn_r101_fpn_20e_20181129-cb85151d.pth
)
|
| X-101-32x4d-FPN | pytorch | 1x|
12.67
|
1.181
|
4.2
| 44.4 | 38.3 |
[
model
](
https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/cascade_mask_rcnn_x101_32x4d_fpn_1x_20181218-1d944c89.pth
)
| X-101-32x4d-FPN | pytorch |20e|
12.67
|
1.181
|
4.2
| 44.9 | 38.7 |
[
model
](
https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/cascade_mask_rcnn_x101_32x4d_fpn_20e_20181218-761a3473.pth
)
| X-101-64x4d-FPN | pytorch | 1x| 1
0.87
| 1.
125
|
3.6
| 45.
5
| 39.
2
|
[
model
](
https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/cascade_mask_rcnn_x101_64x4d_fpn_1x_201
81218-85953a91
.pth
)
| X-101-64x4d-FPN | pytorch |20e|
10.87
|
1.125
|
3.6
| 45.8 | 39.5 |
[
model
](
https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/cascade_mask_rcnn_x101_64x4d_fpn_20e_20181218-630773a7.pth
)
| R-50-FPN | caffe | 1x |
5.1
| 0.
692
|
6.7
| 41.0 | 35.6 | - |
| R-50-FPN | pytorch | 1x |
5.3
| 0.
683
|
6.5
| 41.3 | 35.7 |
[
model
](
https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/cascade_mask_rcnn_r50_fpn_1x_20181123-88b170c9.pth
)
|
| R-50-FPN | pytorch | 20e |
|
|
| 42.4 | 36.6 |
[
model
](
https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/cascade_mask_rcnn_r50_fpn_20e_20181123-6e0c9713.pth
)
|
| R-101-FPN | caffe | 1x |
7.0
|
0.803
|
6
.3 | 43.1 | 37.3 | - |
| R-101-FPN | pytorch | 1x |
7.2
|
0.807
|
6.1
| 42.7 | 37.1 |
[
model
](
https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/cascade_mask_rcnn_r101_fpn_1x_20181129-64f00602.pth
)
|
| R-101-FPN | pytorch | 20e |
|
|
| 43.4 | 37.6 |
[
model
](
https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/cascade_mask_rcnn_r101_fpn_20e_20181129-cb85151d.pth
)
|
| X-101-32x4d-FPN | pytorch | 1x|
8.4
|
0.976
|
5.7
| 44.4 | 38.3 |
[
model
](
https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/cascade_mask_rcnn_x101_32x4d_fpn_1x_20181218-1d944c89.pth
)
| X-101-32x4d-FPN | pytorch |20e|
|
|
| 44.9 | 38.7 |
[
model
](
https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/cascade_mask_rcnn_x101_32x4d_fpn_20e_20181218-761a3473.pth
)
| X-101-64x4d-FPN | pytorch | 1x| 1
1.4
| 1.
33
|
4.7
| 45.
3
| 39.
1
|
[
model
](
https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/cascade_mask_rcnn_x101_64x4d_fpn_1x_201
90501-827e0a70
.pth
)
| X-101-64x4d-FPN | pytorch |20e|
|
|
| 45.8 | 39.5 |
[
model
](
https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/cascade_mask_rcnn_x101_64x4d_fpn_20e_20181218-630773a7.pth
)
**Notes:**
...
...
@@ -162,15 +162,15 @@ Please refer to [HTC](configs/htc/README.md) for details.
| Backbone | Size | Style | Lr schd | Mem (GB) | Train time (s/iter) | Inf time (fps) | box AP | Download |
|:--------:|:----:|:------:|:-------:|:--------:|:-------------------:|:--------------:|:------:|:--------:|
| VGG16 | 300 | caffe | 120e | 3.5 | 0.2
8
6 | 2
2
.9 /
29.2
| 25.7 |
[
model
](
https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/ssd300_coco_vgg16_caffe_120e_20181221-84d7110b.pth
)
|
| VGG16 | 512 | caffe | 120e |
6.3
| 0.4
58
|
17.3
/ 2
1.2
| 29.3 |
[
model
](
https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/ssd512_coco_vgg16_caffe_120e_20181221-d48b0be8.pth
)
|
| VGG16 | 300 | caffe | 120e | 3.5 | 0.2
5
6 | 2
5
.9 /
34.6
| 25.7 |
[
model
](
https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/ssd300_coco_vgg16_caffe_120e_20181221-84d7110b.pth
)
|
| VGG16 | 512 | caffe | 120e |
7.6
| 0.4
12
|
20.7
/ 2
5.4
| 29.3 |
[
model
](
https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/ssd512_coco_vgg16_caffe_120e_20181221-d48b0be8.pth
)
|
### SSD (PASCAL VOC)
| Backbone | Size | Style | Lr schd | Mem (GB) | Train time (s/iter) | Inf time (fps) | box AP | Download |
|:--------:|:----:|:------:|:-------:|:--------:|:-------------------:|:--------------:|:------:|:--------:|
| VGG16 | 300 | caffe | 240e |
1.2
| 0.1
8
9 |
40.1
/ 5
8.0
| 77.
8
|
[
model
](
https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/ssd300_voc_vgg16_caffe_240e_201
81221-2f05dd40
.pth
)
|
| VGG16 | 512 | caffe | 240e |
2.9
| 0.2
6
1 | 2
8.1
/ 3
6.2
| 80.
4
|
[
model
](
https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/ssd512_voc_vgg16_caffe_240e_201
81221-7652e
e1
8
.pth
)
|
| VGG16 | 300 | caffe | 240e |
2.5
| 0.1
5
9 |
35.7
/ 5
3.6
| 77.
5
|
[
model
](
https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/ssd300_voc_vgg16_caffe_240e_201
90501-7160d09a
.pth
)
|
| VGG16 | 512 | caffe | 240e |
4.3
| 0.21
4
| 2
7.5
/ 3
5.9
| 80.
0
|
[
model
](
https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/ssd512_voc_vgg16_caffe_240e_201
90501-ff194b
e1.pth
)
|
**Notes:**
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment