Commit 57d34592 authored by Jiangmiao Pang's avatar Jiangmiao Pang Committed by Kai Chen
Browse files

Add loss evaluator (#678)

* Fix license in setup.py

* Add code for loss evaluator

* Configs support loss evaluator

* Fix a little bug

* Fix flake8

* return revised bbox to reg

* return revised bbox to reg

* revision according to comments

* fix flake8
parent a99dbae7
......@@ -28,7 +28,13 @@ model = dict(
num_classes=81,
target_means=[0., 0., 0., 0.],
target_stds=[0.1, 0.1, 0.2, 0.2],
reg_class_agnostic=False))
reg_class_agnostic=False,
loss_cls=dict(
type='CrossEntropyLoss',
use_sigmoid=False,
loss_weight=1.0),
loss_bbox=dict(
type='SmoothL1Loss', beta=1.0, loss_weight=1.0)))
# model training and testing settings
train_cfg = dict(
rcnn=dict(
......
......@@ -36,7 +36,13 @@ model = dict(
num_classes=81,
target_means=[0., 0., 0., 0.],
target_stds=[0.1, 0.1, 0.2, 0.2],
reg_class_agnostic=False))
reg_class_agnostic=False,
loss_cls=dict(
type='CrossEntropyLoss',
use_sigmoid=False,
loss_weight=1.0),
loss_bbox=dict(
type='SmoothL1Loss', beta=1.0, loss_weight=1.0)))
# model training and testing settings
train_cfg = dict(
rcnn=dict(
......
......@@ -28,7 +28,13 @@ model = dict(
num_classes=81,
target_means=[0., 0., 0., 0.],
target_stds=[0.1, 0.1, 0.2, 0.2],
reg_class_agnostic=False))
reg_class_agnostic=False,
loss_cls=dict(
type='CrossEntropyLoss',
use_sigmoid=False,
loss_weight=1.0),
loss_bbox=dict(
type='SmoothL1Loss', beta=1.0, loss_weight=1.0)))
# model training and testing settings
train_cfg = dict(
rcnn=dict(
......
......@@ -23,7 +23,9 @@ model = dict(
anchor_strides=[4, 8, 16, 32, 64],
target_means=[.0, .0, .0, .0],
target_stds=[1.0, 1.0, 1.0, 1.0],
use_sigmoid_cls=True),
loss_cls=dict(
type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0),
loss_bbox=dict(type='SmoothL1Loss', beta=1.0 / 9.0, loss_weight=1.0)),
bbox_roi_extractor=dict(
type='SingleRoIExtractor',
roi_layer=dict(type='RoIAlign', out_size=7, sample_num=2),
......@@ -38,7 +40,10 @@ model = dict(
num_classes=81,
target_means=[0., 0., 0., 0.],
target_stds=[0.1, 0.1, 0.2, 0.2],
reg_class_agnostic=False))
reg_class_agnostic=False,
loss_cls=dict(
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0),
loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0)))
# model training and testing settings
train_cfg = dict(
rpn=dict(
......@@ -56,7 +61,6 @@ train_cfg = dict(
add_gt_as_proposals=False),
allowed_border=0,
pos_weight=-1,
smoothl1_beta=1 / 9.0,
debug=False),
rpn_proposal=dict(
nms_across_levels=False,
......
......@@ -23,7 +23,9 @@ model = dict(
anchor_strides=[4, 8, 16, 32, 64],
target_means=[.0, .0, .0, .0],
target_stds=[1.0, 1.0, 1.0, 1.0],
use_sigmoid_cls=True),
loss_cls=dict(
type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0),
loss_bbox=dict(type='SmoothL1Loss', beta=1.0 / 9.0, loss_weight=1.0)),
bbox_roi_extractor=dict(
type='SingleRoIExtractor',
roi_layer=dict(type='RoIAlign', out_size=7, sample_num=2),
......@@ -38,7 +40,10 @@ model = dict(
num_classes=81,
target_means=[0., 0., 0., 0.],
target_stds=[0.1, 0.1, 0.2, 0.2],
reg_class_agnostic=False))
reg_class_agnostic=False,
loss_cls=dict(
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0),
loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0)))
# model training and testing settings
train_cfg = dict(
rpn=dict(
......@@ -56,7 +61,6 @@ train_cfg = dict(
add_gt_as_proposals=False),
allowed_border=0,
pos_weight=-1,
smoothl1_beta=1 / 9.0,
debug=False),
rpn_proposal=dict(
nms_across_levels=False,
......
......@@ -32,7 +32,9 @@ model = dict(
anchor_strides=[16],
target_means=[.0, .0, .0, .0],
target_stds=[1.0, 1.0, 1.0, 1.0],
use_sigmoid_cls=True),
loss_cls=dict(
type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0),
loss_bbox=dict(type='SmoothL1Loss', beta=1.0 / 9.0, loss_weight=1.0)),
bbox_roi_extractor=dict(
type='SingleRoIExtractor',
roi_layer=dict(type='RoIAlign', out_size=14, sample_num=2),
......@@ -46,7 +48,10 @@ model = dict(
num_classes=81,
target_means=[0., 0., 0., 0.],
target_stds=[0.1, 0.1, 0.2, 0.2],
reg_class_agnostic=False))
reg_class_agnostic=False,
loss_cls=dict(
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0),
loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0)))
# model training and testing settings
train_cfg = dict(
rpn=dict(
......@@ -64,7 +69,6 @@ train_cfg = dict(
add_gt_as_proposals=False),
allowed_border=0,
pos_weight=-1,
smoothl1_beta=1 / 9.0,
debug=False),
rpn_proposal=dict(
nms_across_levels=False,
......
......@@ -23,7 +23,9 @@ model = dict(
anchor_strides=[4, 8, 16, 32, 64],
target_means=[.0, .0, .0, .0],
target_stds=[1.0, 1.0, 1.0, 1.0],
use_sigmoid_cls=True),
loss_cls=dict(
type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0),
loss_bbox=dict(type='SmoothL1Loss', beta=1.0 / 9.0, loss_weight=1.0)),
bbox_roi_extractor=dict(
type='SingleRoIExtractor',
roi_layer=dict(type='RoIAlign', out_size=7, sample_num=2),
......@@ -38,7 +40,10 @@ model = dict(
num_classes=81,
target_means=[0., 0., 0., 0.],
target_stds=[0.1, 0.1, 0.2, 0.2],
reg_class_agnostic=False))
reg_class_agnostic=False,
loss_cls=dict(
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0),
loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0)))
# model training and testing settings
train_cfg = dict(
rpn=dict(
......@@ -56,7 +61,6 @@ train_cfg = dict(
add_gt_as_proposals=False),
allowed_border=0,
pos_weight=-1,
smoothl1_beta=1 / 9.0,
debug=False),
rpn_proposal=dict(
nms_across_levels=False,
......
......@@ -25,7 +25,9 @@ model = dict(
anchor_strides=[4, 8, 16, 32, 64],
target_means=[.0, .0, .0, .0],
target_stds=[1.0, 1.0, 1.0, 1.0],
use_sigmoid_cls=True),
loss_cls=dict(
type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0),
loss_bbox=dict(type='SmoothL1Loss', beta=1.0 / 9.0, loss_weight=1.0)),
bbox_roi_extractor=dict(
type='SingleRoIExtractor',
roi_layer=dict(type='RoIAlign', out_size=7, sample_num=2),
......@@ -40,7 +42,10 @@ model = dict(
num_classes=81,
target_means=[0., 0., 0., 0.],
target_stds=[0.1, 0.1, 0.2, 0.2],
reg_class_agnostic=False))
reg_class_agnostic=False,
loss_cls=dict(
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0),
loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0)))
# model training and testing settings
train_cfg = dict(
rpn=dict(
......@@ -58,7 +63,6 @@ train_cfg = dict(
add_gt_as_proposals=False),
allowed_border=0,
pos_weight=-1,
smoothl1_beta=1 / 9.0,
debug=False),
rpn_proposal=dict(
nms_across_levels=False,
......@@ -159,7 +163,7 @@ log_config = dict(
total_epochs = 12
dist_params = dict(backend='nccl')
log_level = 'INFO'
work_dir = './work_dirs/faster_rcnn_r50_fpn_1x'
work_dir = './work_dirs/faster_rcnn_x101_32x4d_fpn_1x'
load_from = None
resume_from = None
workflow = [('train', 1)]
......@@ -25,7 +25,9 @@ model = dict(
anchor_strides=[4, 8, 16, 32, 64],
target_means=[.0, .0, .0, .0],
target_stds=[1.0, 1.0, 1.0, 1.0],
use_sigmoid_cls=True),
loss_cls=dict(
type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0),
loss_bbox=dict(type='SmoothL1Loss', beta=1.0 / 9.0, loss_weight=1.0)),
bbox_roi_extractor=dict(
type='SingleRoIExtractor',
roi_layer=dict(type='RoIAlign', out_size=7, sample_num=2),
......@@ -40,7 +42,10 @@ model = dict(
num_classes=81,
target_means=[0., 0., 0., 0.],
target_stds=[0.1, 0.1, 0.2, 0.2],
reg_class_agnostic=False))
reg_class_agnostic=False,
loss_cls=dict(
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0),
loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0)))
# model training and testing settings
train_cfg = dict(
rpn=dict(
......@@ -58,7 +63,6 @@ train_cfg = dict(
add_gt_as_proposals=False),
allowed_border=0,
pos_weight=-1,
smoothl1_beta=1 / 9.0,
debug=False),
rpn_proposal=dict(
nms_across_levels=False,
......@@ -159,7 +163,7 @@ log_config = dict(
total_epochs = 12
dist_params = dict(backend='nccl')
log_level = 'INFO'
work_dir = './work_dirs/faster_rcnn_r50_fpn_1x'
work_dir = './work_dirs/faster_rcnn_x101_64x4d_fpn_1x'
load_from = None
resume_from = None
workflow = [('train', 1)]
......@@ -29,7 +29,9 @@ model = dict(
anchor_strides=[4, 8, 16, 32, 64],
target_means=[.0, .0, .0, .0],
target_stds=[1.0, 1.0, 1.0, 1.0],
use_sigmoid_cls=True),
loss_cls=dict(
type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0),
loss_bbox=dict(type='SmoothL1Loss', beta=1.0 / 9.0, loss_weight=1.0)),
bbox_roi_extractor=dict(
type='SingleRoIExtractor',
roi_layer=dict(type='RoIAlign', out_size=7, sample_num=2),
......@@ -48,7 +50,10 @@ model = dict(
target_stds=[0.1, 0.1, 0.2, 0.2],
reg_class_agnostic=False,
conv_cfg=conv_cfg,
norm_cfg=norm_cfg))
norm_cfg=norm_cfg,
loss_cls=dict(
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0),
loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0)))
# model training and testing settings
train_cfg = dict(
rpn=dict(
......@@ -66,7 +71,6 @@ train_cfg = dict(
add_gt_as_proposals=False),
allowed_border=0,
pos_weight=-1,
smoothl1_beta=1 / 9.0,
debug=False),
rpn_proposal=dict(
nms_across_levels=False,
......
......@@ -29,7 +29,9 @@ model = dict(
anchor_strides=[4, 8, 16, 32, 64],
target_means=[.0, .0, .0, .0],
target_stds=[1.0, 1.0, 1.0, 1.0],
use_sigmoid_cls=True),
loss_cls=dict(
type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0),
loss_bbox=dict(type='SmoothL1Loss', beta=1.0 / 9.0, loss_weight=1.0)),
bbox_roi_extractor=dict(
type='SingleRoIExtractor',
roi_layer=dict(type='RoIAlign', out_size=7, sample_num=2),
......@@ -48,7 +50,10 @@ model = dict(
target_stds=[0.1, 0.1, 0.2, 0.2],
reg_class_agnostic=False,
conv_cfg=conv_cfg,
norm_cfg=norm_cfg),
norm_cfg=norm_cfg,
loss_cls=dict(
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0),
loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0)),
mask_roi_extractor=dict(
type='SingleRoIExtractor',
roi_layer=dict(type='RoIAlign', out_size=14, sample_num=2),
......@@ -61,7 +66,9 @@ model = dict(
conv_out_channels=256,
num_classes=81,
conv_cfg=conv_cfg,
norm_cfg=norm_cfg))
norm_cfg=norm_cfg,
loss_mask=dict(
type='CrossEntropyLoss', use_mask=True, loss_weight=1.0)))
# model training and testing settings
train_cfg = dict(
rpn=dict(
......@@ -79,7 +86,6 @@ train_cfg = dict(
add_gt_as_proposals=False),
allowed_border=0,
pos_weight=-1,
smoothl1_beta=1 / 9.0,
debug=False),
rpn_proposal=dict(
nms_across_levels=False,
......
......@@ -29,7 +29,9 @@ model = dict(
anchor_strides=[4, 8, 16, 32, 64],
target_means=[.0, .0, .0, .0],
target_stds=[1.0, 1.0, 1.0, 1.0],
use_sigmoid_cls=True),
loss_cls=dict(
type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0),
loss_bbox=dict(type='SmoothL1Loss', beta=1.0 / 9.0, loss_weight=1.0)),
bbox_roi_extractor=dict(
type='SingleRoIExtractor',
roi_layer=dict(type='RoIAlign', out_size=7, sample_num=2),
......@@ -48,7 +50,10 @@ model = dict(
target_stds=[0.1, 0.1, 0.2, 0.2],
reg_class_agnostic=False,
conv_cfg=conv_cfg,
norm_cfg=norm_cfg),
norm_cfg=norm_cfg,
loss_cls=dict(
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0),
loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0)),
mask_roi_extractor=dict(
type='SingleRoIExtractor',
roi_layer=dict(type='RoIAlign', out_size=14, sample_num=2),
......@@ -61,7 +66,9 @@ model = dict(
conv_out_channels=256,
num_classes=81,
conv_cfg=conv_cfg,
norm_cfg=norm_cfg))
norm_cfg=norm_cfg,
loss_mask=dict(
type='CrossEntropyLoss', use_mask=True, loss_weight=1.0)))
# model training and testing settings
train_cfg = dict(
rpn=dict(
......@@ -79,7 +86,6 @@ train_cfg = dict(
add_gt_as_proposals=False),
allowed_border=0,
pos_weight=-1,
smoothl1_beta=1 / 9.0,
debug=False),
rpn_proposal=dict(
nms_across_levels=False,
......
......@@ -31,7 +31,9 @@ model = dict(
anchor_strides=[4, 8, 16, 32, 64],
target_means=[.0, .0, .0, .0],
target_stds=[1.0, 1.0, 1.0, 1.0],
use_sigmoid_cls=True),
loss_cls=dict(
type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0),
loss_bbox=dict(type='SmoothL1Loss', beta=1.0 / 9.0, loss_weight=1.0)),
bbox_roi_extractor=dict(
type='SingleRoIExtractor',
roi_layer=dict(type='RoIAlign', out_size=7, sample_num=2),
......@@ -50,7 +52,10 @@ model = dict(
target_stds=[0.1, 0.1, 0.2, 0.2],
reg_class_agnostic=False,
conv_cfg=conv_cfg,
norm_cfg=norm_cfg),
norm_cfg=norm_cfg,
loss_cls=dict(
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0),
loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0)),
mask_roi_extractor=dict(
type='SingleRoIExtractor',
roi_layer=dict(type='RoIAlign', out_size=14, sample_num=2),
......@@ -63,7 +68,9 @@ model = dict(
conv_out_channels=256,
num_classes=81,
conv_cfg=conv_cfg,
norm_cfg=norm_cfg))
norm_cfg=norm_cfg,
loss_mask=dict(
type='CrossEntropyLoss', use_mask=True, loss_weight=1.0)))
# model training and testing settings
train_cfg = dict(
rpn=dict(
......@@ -81,7 +88,6 @@ train_cfg = dict(
add_gt_as_proposals=False),
allowed_border=0,
pos_weight=-1,
smoothl1_beta=1 / 9.0,
debug=False),
rpn_proposal=dict(
nms_across_levels=False,
......
......@@ -27,7 +27,9 @@ model = dict(
anchor_strides=[4, 8, 16, 32, 64],
target_means=[.0, .0, .0, .0],
target_stds=[1.0, 1.0, 1.0, 1.0],
use_sigmoid_cls=True),
loss_cls=dict(
type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0),
loss_bbox=dict(type='SmoothL1Loss', beta=1.0 / 9.0, loss_weight=1.0)),
bbox_roi_extractor=dict(
type='SingleRoIExtractor',
roi_layer=dict(type='RoIAlign', out_size=7, sample_num=2),
......@@ -45,7 +47,10 @@ model = dict(
target_means=[0., 0., 0., 0.],
target_stds=[0.1, 0.1, 0.2, 0.2],
reg_class_agnostic=False,
norm_cfg=norm_cfg),
norm_cfg=norm_cfg,
loss_cls=dict(
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0),
loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0)),
mask_roi_extractor=dict(
type='SingleRoIExtractor',
roi_layer=dict(type='RoIAlign', out_size=14, sample_num=2),
......@@ -57,8 +62,9 @@ model = dict(
in_channels=256,
conv_out_channels=256,
num_classes=81,
norm_cfg=norm_cfg))
norm_cfg=norm_cfg,
loss_mask=dict(
type='CrossEntropyLoss', use_mask=True, loss_weight=1.0)))
# model training and testing settings
train_cfg = dict(
rpn=dict(
......@@ -76,7 +82,6 @@ train_cfg = dict(
add_gt_as_proposals=False),
allowed_border=0,
pos_weight=-1,
smoothl1_beta=1 / 9.0,
debug=False),
rpn_proposal=dict(
nms_across_levels=False,
......
......@@ -27,7 +27,9 @@ model = dict(
anchor_strides=[4, 8, 16, 32, 64],
target_means=[.0, .0, .0, .0],
target_stds=[1.0, 1.0, 1.0, 1.0],
use_sigmoid_cls=True),
loss_cls=dict(
type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0),
loss_bbox=dict(type='SmoothL1Loss', beta=1.0 / 9.0, loss_weight=1.0)),
bbox_roi_extractor=dict(
type='SingleRoIExtractor',
roi_layer=dict(type='RoIAlign', out_size=7, sample_num=2),
......@@ -45,7 +47,10 @@ model = dict(
target_means=[0., 0., 0., 0.],
target_stds=[0.1, 0.1, 0.2, 0.2],
reg_class_agnostic=False,
norm_cfg=norm_cfg),
norm_cfg=norm_cfg,
loss_cls=dict(
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0),
loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0)),
mask_roi_extractor=dict(
type='SingleRoIExtractor',
roi_layer=dict(type='RoIAlign', out_size=14, sample_num=2),
......@@ -57,8 +62,9 @@ model = dict(
in_channels=256,
conv_out_channels=256,
num_classes=81,
norm_cfg=norm_cfg))
norm_cfg=norm_cfg,
loss_mask=dict(
type='CrossEntropyLoss', use_mask=True, loss_weight=1.0)))
# model training and testing settings
train_cfg = dict(
rpn=dict(
......@@ -76,7 +82,6 @@ train_cfg = dict(
add_gt_as_proposals=False),
allowed_border=0,
pos_weight=-1,
smoothl1_beta=1 / 9.0,
debug=False),
rpn_proposal=dict(
nms_across_levels=False,
......
......@@ -27,7 +27,9 @@ model = dict(
anchor_strides=[4, 8, 16, 32, 64],
target_means=[.0, .0, .0, .0],
target_stds=[1.0, 1.0, 1.0, 1.0],
use_sigmoid_cls=True),
loss_cls=dict(
type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0),
loss_bbox=dict(type='SmoothL1Loss', beta=1.0 / 9.0, loss_weight=1.0)),
bbox_roi_extractor=dict(
type='SingleRoIExtractor',
roi_layer=dict(type='RoIAlign', out_size=7, sample_num=2),
......@@ -45,7 +47,10 @@ model = dict(
target_means=[0., 0., 0., 0.],
target_stds=[0.1, 0.1, 0.2, 0.2],
reg_class_agnostic=False,
norm_cfg=norm_cfg),
norm_cfg=norm_cfg,
loss_cls=dict(
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0),
loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0)),
mask_roi_extractor=dict(
type='SingleRoIExtractor',
roi_layer=dict(type='RoIAlign', out_size=14, sample_num=2),
......@@ -57,8 +62,9 @@ model = dict(
in_channels=256,
conv_out_channels=256,
num_classes=81,
norm_cfg=norm_cfg))
norm_cfg=norm_cfg,
loss_mask=dict(
type='CrossEntropyLoss', use_mask=True, loss_weight=1.0)))
# model training and testing settings
train_cfg = dict(
rpn=dict(
......@@ -76,7 +82,6 @@ train_cfg = dict(
add_gt_as_proposals=False),
allowed_border=0,
pos_weight=-1,
smoothl1_beta=1 / 9.0,
debug=False),
rpn_proposal=dict(
nms_across_levels=False,
......
......@@ -34,7 +34,7 @@ mmdetection
## Results and Models
The results on COCO 2017val is shown in the below table. (results on test-dev are usually slightly higher than val)
The results on COCO 2017val are shown in the below table. (results on test-dev are usually slightly higher than val)
| Backbone | Style | Lr schd | Mem (GB) | Train time (s/iter) | Inf time (fps) | box AP | mask AP | Download |
|:---------:|:-------:|:-------:|:--------:|:-------------------:|:--------------:|:------:|:-------:|:--------:|
......@@ -52,4 +52,4 @@ We also provide a powerful HTC with DCN and multi-scale training model. No testi
| Backbone | Style | DCN | training scales | Lr schd | box AP | mask AP | Download |
|:----------------:|:-------:|:-----:|:---------------:|:-------:|:------:|:-------:|:--------:|
| X-101-64x4d-FPN | pytorch | c3-c5 | 400~1400 | 20e | 50.7 | 43.9 | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/htc/htc_dconv_c3-c5_mstrain_400_1400_x101_64x4d_fpn_20e_20190408-0e50669c.pth) |
\ No newline at end of file
| X-101-64x4d-FPN | pytorch | c3-c5 | 400~1400 | 20e | 50.7 | 43.9 | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/htc/htc_dconv_c3-c5_mstrain_400_1400_x101_64x4d_fpn_20e_20190408-0e50669c.pth) |
......@@ -34,7 +34,9 @@ model = dict(
anchor_strides=[4, 8, 16, 32, 64],
target_means=[.0, .0, .0, .0],
target_stds=[1.0, 1.0, 1.0, 1.0],
use_sigmoid_cls=True),
loss_cls=dict(
type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0),
loss_bbox=dict(type='SmoothL1Loss', beta=1.0 / 9.0, loss_weight=1.0)),
bbox_roi_extractor=dict(
type='SingleRoIExtractor',
roi_layer=dict(type='RoIAlign', out_size=7, sample_num=2),
......@@ -50,7 +52,15 @@ model = dict(
num_classes=81,
target_means=[0., 0., 0., 0.],
target_stds=[0.1, 0.1, 0.2, 0.2],
reg_class_agnostic=True),
reg_class_agnostic=True,
loss_cls=dict(
type='CrossEntropyLoss',
use_sigmoid=False,
loss_weight=1.0),
loss_bbox=dict(
type='SmoothL1Loss',
beta=1.0,
loss_weight=1.0)),
dict(
type='SharedFCBBoxHead',
num_fcs=2,
......@@ -60,7 +70,15 @@ model = dict(
num_classes=81,
target_means=[0., 0., 0., 0.],
target_stds=[0.05, 0.05, 0.1, 0.1],
reg_class_agnostic=True),
reg_class_agnostic=True,
loss_cls=dict(
type='CrossEntropyLoss',
use_sigmoid=False,
loss_weight=1.0),
loss_bbox=dict(
type='SmoothL1Loss',
beta=1.0,
loss_weight=1.0)),
dict(
type='SharedFCBBoxHead',
num_fcs=2,
......@@ -70,7 +88,15 @@ model = dict(
num_classes=81,
target_means=[0., 0., 0., 0.],
target_stds=[0.033, 0.033, 0.067, 0.067],
reg_class_agnostic=True)
reg_class_agnostic=True,
loss_cls=dict(
type='CrossEntropyLoss',
use_sigmoid=False,
loss_weight=1.0),
loss_bbox=dict(
type='SmoothL1Loss',
beta=1.0,
loss_weight=1.0))
],
mask_roi_extractor=dict(
type='SingleRoIExtractor',
......@@ -82,7 +108,9 @@ model = dict(
num_convs=4,
in_channels=256,
conv_out_channels=256,
num_classes=81),
num_classes=81,
loss_mask=dict(
type='CrossEntropyLoss', use_mask=True, loss_weight=1.0)),
semantic_roi_extractor=dict(
type='SingleRoIExtractor',
roi_layer=dict(type='RoIAlign', out_size=14, sample_num=2),
......@@ -115,7 +143,6 @@ train_cfg = dict(
add_gt_as_proposals=False),
allowed_border=0,
pos_weight=-1,
smoothl1_beta=1 / 9.0,
debug=False),
rpn_proposal=dict(
nms_across_levels=False,
......
......@@ -26,7 +26,9 @@ model = dict(
anchor_strides=[4, 8, 16, 32, 64],
target_means=[.0, .0, .0, .0],
target_stds=[1.0, 1.0, 1.0, 1.0],
use_sigmoid_cls=True),
loss_cls=dict(
type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0),
loss_bbox=dict(type='SmoothL1Loss', beta=1.0 / 9.0, loss_weight=1.0)),
bbox_roi_extractor=dict(
type='SingleRoIExtractor',
roi_layer=dict(type='RoIAlign', out_size=7, sample_num=2),
......@@ -42,7 +44,15 @@ model = dict(
num_classes=81,
target_means=[0., 0., 0., 0.],
target_stds=[0.1, 0.1, 0.2, 0.2],
reg_class_agnostic=True),
reg_class_agnostic=True,
loss_cls=dict(
type='CrossEntropyLoss',
use_sigmoid=False,
loss_weight=1.0),
loss_bbox=dict(
type='SmoothL1Loss',
beta=1.0,
loss_weight=1.0)),
dict(
type='SharedFCBBoxHead',
num_fcs=2,
......@@ -52,7 +62,15 @@ model = dict(
num_classes=81,
target_means=[0., 0., 0., 0.],
target_stds=[0.05, 0.05, 0.1, 0.1],
reg_class_agnostic=True),
reg_class_agnostic=True,
loss_cls=dict(
type='CrossEntropyLoss',
use_sigmoid=False,
loss_weight=1.0),
loss_bbox=dict(
type='SmoothL1Loss',
beta=1.0,
loss_weight=1.0)),
dict(
type='SharedFCBBoxHead',
num_fcs=2,
......@@ -62,7 +80,15 @@ model = dict(
num_classes=81,
target_means=[0., 0., 0., 0.],
target_stds=[0.033, 0.033, 0.067, 0.067],
reg_class_agnostic=True)
reg_class_agnostic=True,
loss_cls=dict(
type='CrossEntropyLoss',
use_sigmoid=False,
loss_weight=1.0),
loss_bbox=dict(
type='SmoothL1Loss',
beta=1.0,
loss_weight=1.0))
],
mask_roi_extractor=dict(
type='SingleRoIExtractor',
......@@ -74,7 +100,9 @@ model = dict(
num_convs=4,
in_channels=256,
conv_out_channels=256,
num_classes=81),
num_classes=81,
loss_mask=dict(
type='CrossEntropyLoss', use_mask=True, loss_weight=1.0)),
semantic_roi_extractor=dict(
type='SingleRoIExtractor',
roi_layer=dict(type='RoIAlign', out_size=14, sample_num=2),
......@@ -107,7 +135,6 @@ train_cfg = dict(
add_gt_as_proposals=False),
allowed_border=0,
pos_weight=-1,
smoothl1_beta=1 / 9.0,
debug=False),
rpn_proposal=dict(
nms_across_levels=False,
......
......@@ -26,7 +26,9 @@ model = dict(
anchor_strides=[4, 8, 16, 32, 64],
target_means=[.0, .0, .0, .0],
target_stds=[1.0, 1.0, 1.0, 1.0],
use_sigmoid_cls=True),
loss_cls=dict(
type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0),
loss_bbox=dict(type='SmoothL1Loss', beta=1.0 / 9.0, loss_weight=1.0)),
bbox_roi_extractor=dict(
type='SingleRoIExtractor',
roi_layer=dict(type='RoIAlign', out_size=7, sample_num=2),
......@@ -42,7 +44,15 @@ model = dict(
num_classes=81,
target_means=[0., 0., 0., 0.],
target_stds=[0.1, 0.1, 0.2, 0.2],
reg_class_agnostic=True),
reg_class_agnostic=True,
loss_cls=dict(
type='CrossEntropyLoss',
use_sigmoid=False,
loss_weight=1.0),
loss_bbox=dict(
type='SmoothL1Loss',
beta=1.0,
loss_weight=1.0)),
dict(
type='SharedFCBBoxHead',
num_fcs=2,
......@@ -52,7 +62,15 @@ model = dict(
num_classes=81,
target_means=[0., 0., 0., 0.],
target_stds=[0.05, 0.05, 0.1, 0.1],
reg_class_agnostic=True),
reg_class_agnostic=True,
loss_cls=dict(
type='CrossEntropyLoss',
use_sigmoid=False,
loss_weight=1.0),
loss_bbox=dict(
type='SmoothL1Loss',
beta=1.0,
loss_weight=1.0)),
dict(
type='SharedFCBBoxHead',
num_fcs=2,
......@@ -62,7 +80,15 @@ model = dict(
num_classes=81,
target_means=[0., 0., 0., 0.],
target_stds=[0.033, 0.033, 0.067, 0.067],
reg_class_agnostic=True)
reg_class_agnostic=True,
loss_cls=dict(
type='CrossEntropyLoss',
use_sigmoid=False,
loss_weight=1.0),
loss_bbox=dict(
type='SmoothL1Loss',
beta=1.0,
loss_weight=1.0))
],
mask_roi_extractor=dict(
type='SingleRoIExtractor',
......@@ -74,7 +100,9 @@ model = dict(
num_convs=4,
in_channels=256,
conv_out_channels=256,
num_classes=81),
num_classes=81,
loss_mask=dict(
type='CrossEntropyLoss', use_mask=True, loss_weight=1.0)),
semantic_roi_extractor=dict(
type='SingleRoIExtractor',
roi_layer=dict(type='RoIAlign', out_size=14, sample_num=2),
......@@ -107,7 +135,6 @@ train_cfg = dict(
add_gt_as_proposals=False),
allowed_border=0,
pos_weight=-1,
smoothl1_beta=1 / 9.0,
debug=False),
rpn_proposal=dict(
nms_across_levels=False,
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment