Commit 3cb84acc authored by Tianheng Cheng's avatar Tianheng Cheng Committed by Kai Chen
Browse files

Code for "High-Resolution Representations for Labeling Pixels and Regions" (#610)

* support HRNet

* add zip

* remove zip files

* remove zip datasets in config

* modify format and shorten lines

* fix line to long

* support conv_cfg and update conv layer

* revise the backbone network and neck

* update format and pretrained mode

* fix flake8 error

* update modules following review suggestions

* revert some changes for adapting to pretrained models

* update hrnet and hrfpn

* remove unused import

* remove unused import

* finish testing

* change pretrained model link to open-mmlab

* fix docstring and convert models

* update README and model links

* modify configs and README

* support loss evaluator

* update model urls

* format hrnet.py

* format hrfpn.py

* add 20e for cascade config
parent 57d34592
# High-resolution networks (HRNets) for object detection
## Introduction
```
@inproceedings{SunXLW19,
title={Deep High-Resolution Representation Learning for Human Pose Estimation},
author={Ke Sun and Bin Xiao and Dong Liu and Jingdong Wang},
booktitle={CVPR},
year={2019}
}
@article{SunZJCXLMWLW19,
title={High-Resolution Representations for Labeling Pixels and Regions},
author={Ke Sun and Yang Zhao and Borui Jiang and Tianheng Cheng and Bin Xiao
and Dong Liu and Yadong Mu and Xinggang Wang and Wenyu Liu and Jingdong Wang},
journal = {CoRR},
volume = {abs/1904.04514},
year={2019}
}
```
## Results and Models
Faster R-CNN
| Backbone|#Params|GFLOPs|Lr sched|mAP|Download|
| :--:|:--:|:--:|:--:|:--:|:--:|
| HRNetV2-W18 |26.2M|159.1| 1x | 36.1 | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/hrnet/faster_rcnn_hrnetv2_w18_fpn_1x_20190522-e368c387.pth)|
| HRNetV2-W18 |26.2M|159.1| 20-23-24e | 38.1 | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/hrnet/faster_rcnn_hrnetv2_w18_fpn_20_23_24e_20190522-ed3c0293.pth)|
| HRNetV2-W32 |45.0M|245.3| 1x | 39.5 | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/hrnet/faster_rcnn_hrnetv2_w32_fpn_1x_20190522-d22f1fef.pth)|
| HRNetV2-W32 |45.0M|245.3| 20-23-24e | 40.8 | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/hrnet/faster_rcnn_hrnetv2_w32_fpn_20_23_24e_20190522-2d67a5eb.pth)|
| HRNetV2-W40 |60.5M|314.9| 1x | 40.4 | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/hrnet/faster_rcnn_hrnetv2_w40_fpn_1x_20190522-30502318.pth)|
| HRNetV2-W40 |60.5M|314.9| 20-23-24e | 41.4 | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/hrnet/faster_rcnn_hrnetv2_w40_fpn_20_23_24e_20190522-050a7c7f.pth)|
Mask R-CNN
|Backbone|Lr sched|mask mAP|box mAP|Download|
|:--:|:--:|:--:|:--:|:--:|
| HRNetV2-W18 | 1x | 34.2 | 37.3 | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/hrnet/mask_rcnn_hrnetv2_w18_fpn_1x_20190522-c8ad459f.pth)|
| HRNetV2-W18 | 20-23-24e | 35.7 | 39.2 | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/hrnet/mask_rcnn_hrnetv2_w18_fpn_20_23_24e_20190522-5c11b7f2.pth)|
| HRNetV2-W32 | 1x | 36.8 | 40.7 | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/hrnet/mask_rcnn_hrnetv2_w32_fpn_1x_20190522-374aaa00.pth)|
| HRNetV2-W32 | 20-23-24e | 37.6 | 42.1 | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/hrnet/mask_rcnn_hrnetv2_w32_fpn_20_23_24e_20190522-4dd02a79.pth)|
Cascade R-CNN
|Backbone|Lr sched|mAP|Download|
|:--:|:--:|:--:|:--:|
| HRNetV2-W32 | 20e | 43.7 | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/hrnet/cascade_rcnn_hrnetv2_w32_fpn_20e_20190522-55bec4ee.pth)|
**Note:**
- HRNetV2 ImageNet pretrained models are in [HRNets for Image Classification](https://github.com/HRNet/HRNet-Image-Classification).
# model settings
model = dict(
type='CascadeRCNN',
num_stages=3,
pretrained='open-mmlab://msra/hrnetv2_w32',
backbone=dict(
type='HRNet',
extra=dict(
stage1=dict(
num_modules=1,
num_branches=1,
block='BOTTLENECK',
num_blocks=(4, ),
num_channels=(64, )),
stage2=dict(
num_modules=1,
num_branches=2,
block='BASIC',
num_blocks=(4, 4),
num_channels=(32, 64)),
stage3=dict(
num_modules=4,
num_branches=3,
block='BASIC',
num_blocks=(4, 4, 4),
num_channels=(32, 64, 128)),
stage4=dict(
num_modules=3,
num_branches=4,
block='BASIC',
num_blocks=(4, 4, 4, 4),
num_channels=(32, 64, 128, 256)))),
neck=dict(
type='HRFPN',
in_channels=[32, 64, 128, 256],
out_channels=256),
rpn_head=dict(
type='RPNHead',
in_channels=256,
feat_channels=256,
anchor_scales=[8],
anchor_ratios=[0.5, 1.0, 2.0],
anchor_strides=[4, 8, 16, 32, 64],
target_means=[.0, .0, .0, .0],
target_stds=[1.0, 1.0, 1.0, 1.0],
loss_cls=dict(
type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0),
loss_bbox=dict(type='SmoothL1Loss', beta=1.0 / 9.0, loss_weight=1.0)),
bbox_roi_extractor=dict(
type='SingleRoIExtractor',
roi_layer=dict(
type='RoIAlign',
out_size=7,
sample_num=2),
out_channels=256,
featmap_strides=[4, 8, 16, 32]),
bbox_head=[
dict(
type='SharedFCBBoxHead',
num_fcs=2,
in_channels=256,
fc_out_channels=1024,
roi_feat_size=7,
num_classes=81,
target_means=[0., 0., 0., 0.],
target_stds=[0.1, 0.1, 0.2, 0.2],
reg_class_agnostic=True,
loss_cls=dict(
type='CrossEntropyLoss',
use_sigmoid=False,
loss_weight=1.0),
loss_bbox=dict(
type='SmoothL1Loss',
beta=1.0,
loss_weight=1.0)),
dict(
type='SharedFCBBoxHead',
num_fcs=2,
in_channels=256,
fc_out_channels=1024,
roi_feat_size=7,
num_classes=81,
target_means=[0., 0., 0., 0.],
target_stds=[0.05, 0.05, 0.1, 0.1],
reg_class_agnostic=True,
loss_cls=dict(
type='CrossEntropyLoss',
use_sigmoid=False,
loss_weight=1.0),
loss_bbox=dict(
type='SmoothL1Loss',
beta=1.0,
loss_weight=1.0)),
dict(
type='SharedFCBBoxHead',
num_fcs=2,
in_channels=256,
fc_out_channels=1024,
roi_feat_size=7,
num_classes=81,
target_means=[0., 0., 0., 0.],
target_stds=[0.033, 0.033, 0.067, 0.067],
reg_class_agnostic=True,
loss_cls=dict(
type='CrossEntropyLoss',
use_sigmoid=False,
loss_weight=1.0),
loss_bbox=dict(
type='SmoothL1Loss',
beta=1.0,
loss_weight=1.0)),
])
# model training and testing settings
train_cfg = dict(
rpn=dict(
assigner=dict(
type='MaxIoUAssigner',
pos_iou_thr=0.7,
neg_iou_thr=0.3,
min_pos_iou=0.3,
ignore_iof_thr=-1),
sampler=dict(
type='RandomSampler',
num=256,
pos_fraction=0.5,
neg_pos_ub=-1,
add_gt_as_proposals=False),
allowed_border=0,
pos_weight=-1,
debug=False),
rpn_proposal=dict(
nms_across_levels=False,
nms_pre=2000,
nms_post=2000,
max_num=2000,
nms_thr=0.7,
min_bbox_size=0),
rcnn=[
dict(
assigner=dict(
type='MaxIoUAssigner',
pos_iou_thr=0.5,
neg_iou_thr=0.5,
min_pos_iou=0.5,
ignore_iof_thr=-1),
sampler=dict(
type='RandomSampler',
num=512,
pos_fraction=0.25,
neg_pos_ub=-1,
add_gt_as_proposals=True),
pos_weight=-1,
debug=False),
dict(
assigner=dict(
type='MaxIoUAssigner',
pos_iou_thr=0.6,
neg_iou_thr=0.6,
min_pos_iou=0.6,
ignore_iof_thr=-1),
sampler=dict(
type='RandomSampler',
num=512,
pos_fraction=0.25,
neg_pos_ub=-1,
add_gt_as_proposals=True),
pos_weight=-1,
debug=False),
dict(
assigner=dict(
type='MaxIoUAssigner',
pos_iou_thr=0.7,
neg_iou_thr=0.7,
min_pos_iou=0.7,
ignore_iof_thr=-1),
sampler=dict(
type='RandomSampler',
num=512,
pos_fraction=0.25,
neg_pos_ub=-1,
add_gt_as_proposals=True),
pos_weight=-1,
debug=False)
],
stage_loss_weights=[1, 0.5, 0.25])
test_cfg = dict(
rpn=dict(
nms_across_levels=False,
nms_pre=1000,
nms_post=1000,
max_num=1000,
nms_thr=0.7,
min_bbox_size=0),
rcnn=dict(
score_thr=0.05,
nms=dict(type='nms', iou_thr=0.5),
max_per_img=100),
keep_all_stages=False)
# dataset settings
dataset_type = 'CocoDataset'
data_root = 'data/coco/'
img_norm_cfg = dict(
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
to_rgb=True)
data = dict(
imgs_per_gpu=2,
workers_per_gpu=2,
train=dict(
type=dataset_type,
ann_file=data_root + 'annotations/instances_train2017.json',
img_prefix=data_root + 'train2017/',
img_scale=(1333, 800),
img_norm_cfg=img_norm_cfg,
size_divisor=32,
flip_ratio=0.5,
with_mask=False,
with_crowd=True,
with_label=True),
val=dict(
type=dataset_type,
ann_file=data_root + 'annotations/instances_val2017.json',
img_prefix=data_root + 'val2017/',
img_scale=(1333, 800),
img_norm_cfg=img_norm_cfg,
size_divisor=32,
flip_ratio=0,
with_mask=False,
with_crowd=True,
with_label=True),
test=dict(
type=dataset_type,
ann_file=data_root + 'annotations/instances_val2017.json',
img_prefix=data_root + 'val2017/',
img_scale=(1333, 800),
img_norm_cfg=img_norm_cfg,
size_divisor=32,
flip_ratio=0,
with_mask=False,
with_label=False,
test_mode=True))
# optimizer
optimizer = dict(type='SGD', lr=0.02, momentum=0.9, weight_decay=0.0001)
optimizer_config = dict(grad_clip=dict(max_norm=35, norm_type=2))
# learning policy
lr_config = dict(
policy='step',
warmup='linear',
warmup_iters=500,
warmup_ratio=1.0 / 3,
step=[16, 19])
checkpoint_config = dict(interval=1)
# yapf:disable
log_config = dict(
interval=50,
hooks=[
dict(type='TextLoggerHook'),
# dict(type='TensorboardLoggerHook')
])
# yapf:enable
# runtime settings
total_epochs = 20
dist_params = dict(backend='nccl')
log_level = 'INFO'
work_dir = './work_dirs/cascade_rcnn_hrnetv2p_w32'
load_from = None
resume_from = None
workflow = [('train', 1)]
# model settings
model = dict(
type='FasterRCNN',
pretrained='open-mmlab://msra/hrnetv2_w18',
backbone=dict(
type='HRNet',
extra=dict(
stage1=dict(
num_modules=1,
num_branches=1,
block='BOTTLENECK',
num_blocks=(4,),
num_channels=(64,)),
stage2=dict(
num_modules=1,
num_branches=2,
block='BASIC',
num_blocks=(4, 4),
num_channels=(18, 36)),
stage3=dict(
num_modules=4,
num_branches=3,
block='BASIC',
num_blocks=(4, 4, 4),
num_channels=(18, 36, 72)),
stage4=dict(
num_modules=3,
num_branches=4,
block='BASIC',
num_blocks=(4, 4, 4, 4),
num_channels=(18, 36, 72, 144)))),
neck=dict(
type='HRFPN',
in_channels=[18, 36, 72, 144],
out_channels=256),
rpn_head=dict(
type='RPNHead',
in_channels=256,
feat_channels=256,
anchor_scales=[8],
anchor_ratios=[0.5, 1.0, 2.0],
anchor_strides=[4, 8, 16, 32, 64],
target_means=[.0, .0, .0, .0],
target_stds=[1.0, 1.0, 1.0, 1.0],
loss_cls=dict(
type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0),
loss_bbox=dict(type='SmoothL1Loss', beta=1.0 / 9.0, loss_weight=1.0)),
bbox_roi_extractor=dict(
type='SingleRoIExtractor',
roi_layer=dict(type='RoIAlign', out_size=7, sample_num=2),
out_channels=256,
featmap_strides=[4, 8, 16, 32]),
bbox_head=dict(
type='SharedFCBBoxHead',
num_fcs=2,
in_channels=256,
fc_out_channels=1024,
roi_feat_size=7,
num_classes=81,
target_means=[0., 0., 0., 0.],
target_stds=[0.1, 0.1, 0.2, 0.2],
reg_class_agnostic=False,
loss_cls=dict(
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0),
loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0)))
# model training and testing settings
train_cfg = dict(
rpn=dict(
assigner=dict(
type='MaxIoUAssigner',
pos_iou_thr=0.7,
neg_iou_thr=0.3,
min_pos_iou=0.3,
ignore_iof_thr=-1),
sampler=dict(
type='RandomSampler',
num=256,
pos_fraction=0.5,
neg_pos_ub=-1,
add_gt_as_proposals=False),
allowed_border=0,
pos_weight=-1,
debug=False),
rpn_proposal=dict(
nms_across_levels=False,
nms_pre=2000,
nms_post=2000,
max_num=2000,
nms_thr=0.7,
min_bbox_size=0),
rcnn=dict(
assigner=dict(
type='MaxIoUAssigner',
pos_iou_thr=0.5,
neg_iou_thr=0.5,
min_pos_iou=0.5,
ignore_iof_thr=-1),
sampler=dict(
type='RandomSampler',
num=512,
pos_fraction=0.25,
neg_pos_ub=-1,
add_gt_as_proposals=True),
pos_weight=-1,
debug=False))
test_cfg = dict(
rpn=dict(
nms_across_levels=False,
nms_pre=1000,
nms_post=1000,
max_num=1000,
nms_thr=0.7,
min_bbox_size=0),
rcnn=dict(
score_thr=0.05, nms=dict(type='nms', iou_thr=0.5), max_per_img=100)
# soft-nms is also supported for rcnn testing
# e.g., nms=dict(type='soft_nms', iou_thr=0.5, min_score=0.05)
)
# dataset settings
dataset_type = 'CocoDataset'
data_root = 'data/coco/'
img_norm_cfg = dict(mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375], to_rgb=True)
data = dict(
imgs_per_gpu=2,
workers_per_gpu=4,
train=dict(
type=dataset_type,
ann_file=data_root + 'annotations/instances_train2017.json',
img_prefix=data_root + 'train2017/',
img_scale=(1333, 800),
img_norm_cfg=img_norm_cfg,
size_divisor=32,
flip_ratio=0.5,
with_mask=False,
with_crowd=True,
with_label=True),
val=dict(
type=dataset_type,
ann_file=data_root + 'annotations/instances_val2017.json',
img_prefix=data_root + 'val2017/',
img_scale=(1333, 800),
img_norm_cfg=img_norm_cfg,
size_divisor=32,
flip_ratio=0,
with_mask=False,
with_crowd=True,
with_label=True),
test=dict(
type=dataset_type,
ann_file=data_root + 'annotations/instances_val2017.json',
img_prefix=data_root + 'val2017/',
img_scale=(1333, 800),
img_norm_cfg=img_norm_cfg,
size_divisor=32,
flip_ratio=0,
with_mask=False,
with_label=False,
test_mode=True))
# optimizer
optimizer = dict(type='SGD', lr=0.02, momentum=0.9, weight_decay=0.0001)
optimizer_config = dict(grad_clip=dict(max_norm=35, norm_type=2))
# learning policy
lr_config = dict(
policy='step',
warmup='linear',
warmup_iters=500,
warmup_ratio=1.0 / 3,
step=[8, 11])
checkpoint_config = dict(interval=1)
# yapf:disable
log_config = dict(
interval=50,
hooks=[
dict(type='TextLoggerHook'),
# dict(type='TensorboardLoggerHook')
])
# yapf:enable
# runtime settings
total_epochs = 12
dist_params = dict(backend='nccl')
log_level = 'INFO'
work_dir = './work_dirs/faster_rcnn_hrnetv2p_w18_1x'
load_from = None
resume_from = None
workflow = [('train', 1)]
# model settings
model = dict(
type='FasterRCNN',
pretrained='open-mmlab://msra/hrnetv2_w32',
backbone=dict(
type='HRNet',
extra=dict(
stage1=dict(
num_modules=1,
num_branches=1,
block='BOTTLENECK',
num_blocks=(4,),
num_channels=(64,)),
stage2=dict(
num_modules=1,
num_branches=2,
block='BASIC',
num_blocks=(4, 4),
num_channels=(32, 64)),
stage3=dict(
num_modules=4,
num_branches=3,
block='BASIC',
num_blocks=(4, 4, 4),
num_channels=(32, 64, 128)),
stage4=dict(
num_modules=3,
num_branches=4,
block='BASIC',
num_blocks=(4, 4, 4, 4),
num_channels=(32, 64, 128, 256)))),
neck=dict(
type='HRFPN',
in_channels=[32, 64, 128, 256],
out_channels=256),
rpn_head=dict(
type='RPNHead',
in_channels=256,
feat_channels=256,
anchor_scales=[8],
anchor_ratios=[0.5, 1.0, 2.0],
anchor_strides=[4, 8, 16, 32, 64],
target_means=[.0, .0, .0, .0],
target_stds=[1.0, 1.0, 1.0, 1.0],
loss_cls=dict(
type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0),
loss_bbox=dict(type='SmoothL1Loss', beta=1.0 / 9.0, loss_weight=1.0)),
bbox_roi_extractor=dict(
type='SingleRoIExtractor',
roi_layer=dict(type='RoIAlign', out_size=7, sample_num=2),
out_channels=256,
featmap_strides=[4, 8, 16, 32]),
bbox_head=dict(
type='SharedFCBBoxHead',
num_fcs=2,
in_channels=256,
fc_out_channels=1024,
roi_feat_size=7,
num_classes=81,
target_means=[0., 0., 0., 0.],
target_stds=[0.1, 0.1, 0.2, 0.2],
reg_class_agnostic=False,
loss_cls=dict(
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0),
loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0)))
# model training and testing settings
train_cfg = dict(
rpn=dict(
assigner=dict(
type='MaxIoUAssigner',
pos_iou_thr=0.7,
neg_iou_thr=0.3,
min_pos_iou=0.3,
ignore_iof_thr=-1),
sampler=dict(
type='RandomSampler',
num=256,
pos_fraction=0.5,
neg_pos_ub=-1,
add_gt_as_proposals=False),
allowed_border=0,
pos_weight=-1,
debug=False),
rpn_proposal=dict(
nms_across_levels=False,
nms_pre=2000,
nms_post=2000,
max_num=2000,
nms_thr=0.7,
min_bbox_size=0),
rcnn=dict(
assigner=dict(
type='MaxIoUAssigner',
pos_iou_thr=0.5,
neg_iou_thr=0.5,
min_pos_iou=0.5,
ignore_iof_thr=-1),
sampler=dict(
type='RandomSampler',
num=512,
pos_fraction=0.25,
neg_pos_ub=-1,
add_gt_as_proposals=True),
pos_weight=-1,
debug=False))
test_cfg = dict(
rpn=dict(
nms_across_levels=False,
nms_pre=1000,
nms_post=1000,
max_num=1000,
nms_thr=0.7,
min_bbox_size=0),
rcnn=dict(
score_thr=0.05, nms=dict(type='nms', iou_thr=0.5), max_per_img=100)
# soft-nms is also supported for rcnn testing
# e.g., nms=dict(type='soft_nms', iou_thr=0.5, min_score=0.05)
)
# dataset settings
dataset_type = 'CocoDataset'
data_root = 'data/coco/'
img_norm_cfg = dict(mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375], to_rgb=True)
data = dict(
imgs_per_gpu=2,
workers_per_gpu=2,
train=dict(
type=dataset_type,
ann_file=data_root + 'annotations/instances_train2017.json',
img_prefix=data_root + 'train2017/',
img_scale=(1333, 800),
img_norm_cfg=img_norm_cfg,
size_divisor=32,
flip_ratio=0.5,
with_mask=False,
with_crowd=True,
with_label=True),
val=dict(
type=dataset_type,
ann_file=data_root + 'annotations/instances_val2017.json',
img_prefix=data_root + 'val2017/',
img_scale=(1333, 800),
img_norm_cfg=img_norm_cfg,
size_divisor=32,
flip_ratio=0,
with_mask=False,
with_crowd=True,
with_label=True),
test=dict(
type=dataset_type,
ann_file=data_root + 'annotations/instances_val2017.json',
img_prefix=data_root + 'val2017/',
img_scale=(1333, 800),
img_norm_cfg=img_norm_cfg,
size_divisor=32,
flip_ratio=0,
with_mask=False,
with_label=False,
test_mode=True))
# optimizer
optimizer = dict(type='SGD', lr=0.02, momentum=0.9, weight_decay=0.0001)
optimizer_config = dict(grad_clip=dict(max_norm=35, norm_type=2))
# learning policy
lr_config = dict(
policy='step',
warmup='linear',
warmup_iters=500,
warmup_ratio=1.0 / 3,
step=[8, 11])
checkpoint_config = dict(interval=1)
# yapf:disable
log_config = dict(
interval=50,
hooks=[
dict(type='TextLoggerHook'),
# dict(type='TensorboardLoggerHook')
])
# yapf:enable
# runtime settings
total_epochs = 12
dist_params = dict(backend='nccl')
log_level = 'INFO'
work_dir = './work_dirs/faster_rcnn_hrnetv2p_w32_1x'
load_from = None
resume_from = None
workflow = [('train', 1)]
# model settings
model = dict(
type='FasterRCNN',
pretrained='open-mmlab://msra/hrnetv2_w40',
backbone=dict(
type='HRNet',
extra=dict(
stage1=dict(
num_modules=1,
num_branches=1,
block='BOTTLENECK',
num_blocks=(4,),
num_channels=(64,)),
stage2=dict(
num_modules=1,
num_branches=2,
block='BASIC',
num_blocks=(4, 4),
num_channels=(40, 80)),
stage3=dict(
num_modules=4,
num_branches=3,
block='BASIC',
num_blocks=(4, 4, 4),
num_channels=(40, 80, 160)),
stage4=dict(
num_modules=3,
num_branches=4,
block='BASIC',
num_blocks=(4, 4, 4, 4),
num_channels=(40, 80, 160, 320)))),
neck=dict(
type='HRFPN',
in_channels=[40, 80, 160, 320],
out_channels=256),
rpn_head=dict(
type='RPNHead',
in_channels=256,
feat_channels=256,
anchor_scales=[8],
anchor_ratios=[0.5, 1.0, 2.0],
anchor_strides=[4, 8, 16, 32, 64],
target_means=[.0, .0, .0, .0],
target_stds=[1.0, 1.0, 1.0, 1.0],
loss_cls=dict(
type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0),
loss_bbox=dict(type='SmoothL1Loss', beta=1.0 / 9.0, loss_weight=1.0)),
bbox_roi_extractor=dict(
type='SingleRoIExtractor',
roi_layer=dict(type='RoIAlign', out_size=7, sample_num=2),
out_channels=256,
featmap_strides=[4, 8, 16, 32]),
bbox_head=dict(
type='SharedFCBBoxHead',
num_fcs=2,
in_channels=256,
fc_out_channels=1024,
roi_feat_size=7,
num_classes=81,
target_means=[0., 0., 0., 0.],
target_stds=[0.1, 0.1, 0.2, 0.2],
reg_class_agnostic=False,
loss_cls=dict(
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0),
loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0)))
# model training and testing settings
train_cfg = dict(
rpn=dict(
assigner=dict(
type='MaxIoUAssigner',
pos_iou_thr=0.7,
neg_iou_thr=0.3,
min_pos_iou=0.3,
ignore_iof_thr=-1),
sampler=dict(
type='RandomSampler',
num=256,
pos_fraction=0.5,
neg_pos_ub=-1,
add_gt_as_proposals=False),
allowed_border=0,
pos_weight=-1,
debug=False),
rpn_proposal=dict(
nms_across_levels=False,
nms_pre=2000,
nms_post=2000,
max_num=2000,
nms_thr=0.7,
min_bbox_size=0),
rcnn=dict(
assigner=dict(
type='MaxIoUAssigner',
pos_iou_thr=0.5,
neg_iou_thr=0.5,
min_pos_iou=0.5,
ignore_iof_thr=-1),
sampler=dict(
type='RandomSampler',
num=512,
pos_fraction=0.25,
neg_pos_ub=-1,
add_gt_as_proposals=True),
pos_weight=-1,
debug=False))
test_cfg = dict(
rpn=dict(
nms_across_levels=False,
nms_pre=1000,
nms_post=1000,
max_num=1000,
nms_thr=0.7,
min_bbox_size=0),
rcnn=dict(
score_thr=0.05, nms=dict(type='nms', iou_thr=0.5), max_per_img=100)
# soft-nms is also supported for rcnn testing
# e.g., nms=dict(type='soft_nms', iou_thr=0.5, min_score=0.05)
)
# dataset settings
dataset_type = 'CocoDataset'
data_root = 'data/coco/'
img_norm_cfg = dict(mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375], to_rgb=True)
data = dict(
imgs_per_gpu=2,
workers_per_gpu=4,
train=dict(
type=dataset_type,
ann_file=data_root + 'annotations/instances_train2017.json',
img_prefix=data_root + 'train2017/',
img_scale=(1333, 800),
img_norm_cfg=img_norm_cfg,
size_divisor=32,
flip_ratio=0.5,
with_mask=False,
with_crowd=True,
with_label=True),
val=dict(
type=dataset_type,
ann_file=data_root + 'annotations/instances_val2017.json',
img_prefix=data_root + 'val2017/',
img_scale=(1333, 800),
img_norm_cfg=img_norm_cfg,
size_divisor=32,
flip_ratio=0,
with_mask=False,
with_crowd=True,
with_label=True),
test=dict(
type=dataset_type,
ann_file=data_root + 'annotations/instances_val2017.json',
img_prefix=data_root + 'val2017/',
img_scale=(1333, 800),
img_norm_cfg=img_norm_cfg,
size_divisor=32,
flip_ratio=0,
with_mask=False,
with_label=False,
test_mode=True))
# optimizer
optimizer = dict(type='SGD', lr=0.02, momentum=0.9, weight_decay=0.0001)
optimizer_config = dict(grad_clip=dict(max_norm=35, norm_type=2))
# learning policy
lr_config = dict(
policy='step',
warmup='linear',
warmup_iters=500,
warmup_ratio=1.0 / 3,
step=[8, 11])
checkpoint_config = dict(interval=1)
# yapf:disable
log_config = dict(
interval=50,
hooks=[
dict(type='TextLoggerHook'),
# dict(type='TensorboardLoggerHook')
])
# yapf:enable
# runtime settings
total_epochs = 12
dist_params = dict(backend='nccl')
log_level = 'INFO'
work_dir = './work_dirs/faster_rcnn_hrnetv2p_w40_1x'
load_from = None
resume_from = None
workflow = [('train', 1)]
# model settings
model = dict(
type='MaskRCNN',
pretrained='open-mmlab://msra/hrnetv2_w18',
backbone=dict(
type='HRNet',
extra=dict(
stage1=dict(
num_modules=1,
num_branches=1,
block='BOTTLENECK',
num_blocks=(4,),
num_channels=(64,)),
stage2=dict(
num_modules=1,
num_branches=2,
block='BASIC',
num_blocks=(4, 4),
num_channels=(18, 36)),
stage3=dict(
num_modules=4,
num_branches=3,
block='BASIC',
num_blocks=(4, 4, 4),
num_channels=(18, 36, 72)),
stage4=dict(
num_modules=3,
num_branches=4,
block='BASIC',
num_blocks=(4, 4, 4, 4),
num_channels=(18, 36, 72, 144)))),
neck=dict(
type='HRFPN',
in_channels=[18, 36, 72, 144],
out_channels=256),
rpn_head=dict(
type='RPNHead',
in_channels=256,
feat_channels=256,
anchor_scales=[8],
anchor_ratios=[0.5, 1.0, 2.0],
anchor_strides=[4, 8, 16, 32, 64],
target_means=[.0, .0, .0, .0],
target_stds=[1.0, 1.0, 1.0, 1.0],
loss_cls=dict(
type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0),
loss_bbox=dict(type='SmoothL1Loss', beta=1.0 / 9.0, loss_weight=1.0)),
bbox_roi_extractor=dict(
type='SingleRoIExtractor',
roi_layer=dict(type='RoIAlign', out_size=7, sample_num=2),
out_channels=256,
featmap_strides=[4, 8, 16, 32]),
bbox_head=dict(
type='SharedFCBBoxHead',
num_fcs=2,
in_channels=256,
fc_out_channels=1024,
roi_feat_size=7,
num_classes=81,
target_means=[0., 0., 0., 0.],
target_stds=[0.1, 0.1, 0.2, 0.2],
reg_class_agnostic=False,
loss_cls=dict(
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0),
loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0)),
mask_roi_extractor=dict(
type='SingleRoIExtractor',
roi_layer=dict(type='RoIAlign', out_size=14, sample_num=2),
out_channels=256,
featmap_strides=[4, 8, 16, 32]),
mask_head=dict(
type='FCNMaskHead',
num_convs=4,
in_channels=256,
conv_out_channels=256,
num_classes=81,
loss_mask=dict(
type='CrossEntropyLoss', use_mask=True, loss_weight=1.0)))
# model training and testing settings
train_cfg = dict(
rpn=dict(
assigner=dict(
type='MaxIoUAssigner',
pos_iou_thr=0.7,
neg_iou_thr=0.3,
min_pos_iou=0.3,
ignore_iof_thr=-1),
sampler=dict(
type='RandomSampler',
num=256,
pos_fraction=0.5,
neg_pos_ub=-1,
add_gt_as_proposals=False),
allowed_border=0,
pos_weight=-1,
debug=False),
rpn_proposal=dict(
nms_across_levels=False,
nms_pre=2000,
nms_post=2000,
max_num=2000,
nms_thr=0.7,
min_bbox_size=0),
rcnn=dict(
assigner=dict(
type='MaxIoUAssigner',
pos_iou_thr=0.5,
neg_iou_thr=0.5,
min_pos_iou=0.5,
ignore_iof_thr=-1),
sampler=dict(
type='RandomSampler',
num=512,
pos_fraction=0.25,
neg_pos_ub=-1,
add_gt_as_proposals=True),
mask_size=28,
pos_weight=-1,
debug=False))
test_cfg = dict(
rpn=dict(
nms_across_levels=False,
nms_pre=1000,
nms_post=1000,
max_num=1000,
nms_thr=0.7,
min_bbox_size=0),
rcnn=dict(
score_thr=0.05,
nms=dict(type='nms', iou_thr=0.5),
max_per_img=100,
mask_thr_binary=0.5))
# dataset settings
dataset_type = 'CocoDataset'
data_root = 'data/coco/'
img_norm_cfg = dict(mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375], to_rgb=True)
data = dict(
imgs_per_gpu=2,
workers_per_gpu=2,
train=dict(
type=dataset_type,
ann_file=data_root + 'annotations/instances_train2017.json',
img_prefix=data_root + 'train2017/',
img_scale=(1333, 800),
img_norm_cfg=img_norm_cfg,
size_divisor=32,
flip_ratio=0.5,
with_mask=True,
with_crowd=True,
with_label=True),
val=dict(
type=dataset_type,
ann_file=data_root + 'annotations/instances_val2017.json',
img_prefix=data_root + 'val2017/',
img_scale=(1333, 800),
img_norm_cfg=img_norm_cfg,
size_divisor=32,
flip_ratio=0,
with_mask=True,
with_crowd=True,
with_label=True),
test=dict(
type=dataset_type,
ann_file=data_root + 'annotations/instances_val2017.json',
img_prefix=data_root + 'val2017/',
img_scale=(1333, 800),
img_norm_cfg=img_norm_cfg,
size_divisor=32,
flip_ratio=0,
with_mask=False,
with_label=False,
test_mode=True))
# optimizer
# if you use 8 GPUs for training, please change lr to 0.02
optimizer = dict(type='SGD', lr=0.02, momentum=0.9, weight_decay=0.0001)
optimizer_config = dict(grad_clip=dict(max_norm=35, norm_type=2))
# learning policy
lr_config = dict(
policy='step',
warmup='linear',
warmup_iters=500,
warmup_ratio=1.0 / 3,
step=[8, 11])
checkpoint_config = dict(interval=1)
# yapf:disable
log_config = dict(
interval=50,
hooks=[
dict(type='TextLoggerHook'),
# dict(type='TensorboardLoggerHook')
])
# yapf:enable
# runtime settings
total_epochs = 12
dist_params = dict(backend='nccl')
log_level = 'INFO'
work_dir = './work_dirs/mask_rcnn_hrnetv2p_w18_1x'
load_from = None
resume_from = None
workflow = [('train', 1)]
# model settings
model = dict(
type='MaskRCNN',
pretrained='open-mmlab://msra/hrnetv2_w32',
backbone=dict(
type='HRNet',
extra=dict(
stage1=dict(
num_modules=1,
num_branches=1,
block='BOTTLENECK',
num_blocks=(4,),
num_channels=(64,)),
stage2=dict(
num_modules=1,
num_branches=2,
block='BASIC',
num_blocks=(4, 4),
num_channels=(32, 64)),
stage3=dict(
num_modules=4,
num_branches=3,
block='BASIC',
num_blocks=(4, 4, 4),
num_channels=(32, 64, 128)),
stage4=dict(
num_modules=3,
num_branches=4,
block='BASIC',
num_blocks=(4, 4, 4, 4),
num_channels=(32, 64, 128, 256)))),
neck=dict(
type='HRFPN',
in_channels=[32, 64, 128, 256],
out_channels=256),
rpn_head=dict(
type='RPNHead',
in_channels=256,
feat_channels=256,
anchor_scales=[8],
anchor_ratios=[0.5, 1.0, 2.0],
anchor_strides=[4, 8, 16, 32, 64],
target_means=[.0, .0, .0, .0],
target_stds=[1.0, 1.0, 1.0, 1.0],
loss_cls=dict(
type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0),
loss_bbox=dict(type='SmoothL1Loss', beta=1.0 / 9.0, loss_weight=1.0)),
bbox_roi_extractor=dict(
type='SingleRoIExtractor',
roi_layer=dict(type='RoIAlign', out_size=7, sample_num=2),
out_channels=256,
featmap_strides=[4, 8, 16, 32]),
bbox_head=dict(
type='SharedFCBBoxHead',
num_fcs=2,
in_channels=256,
fc_out_channels=1024,
roi_feat_size=7,
num_classes=81,
target_means=[0., 0., 0., 0.],
target_stds=[0.1, 0.1, 0.2, 0.2],
loss_cls=dict(
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0),
loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0)),
mask_roi_extractor=dict(
type='SingleRoIExtractor',
roi_layer=dict(type='RoIAlign', out_size=14, sample_num=2),
out_channels=256,
featmap_strides=[4, 8, 16, 32]),
mask_head=dict(
type='FCNMaskHead',
num_convs=4,
in_channels=256,
conv_out_channels=256,
num_classes=81,
loss_mask=dict(
type='CrossEntropyLoss', use_mask=True, loss_weight=1.0)))
# model training and testing settings
train_cfg = dict(
rpn=dict(
assigner=dict(
type='MaxIoUAssigner',
pos_iou_thr=0.7,
neg_iou_thr=0.3,
min_pos_iou=0.3,
ignore_iof_thr=-1),
sampler=dict(
type='RandomSampler',
num=256,
pos_fraction=0.5,
neg_pos_ub=-1,
add_gt_as_proposals=False),
allowed_border=0,
pos_weight=-1,
debug=False),
rpn_proposal=dict(
nms_across_levels=False,
nms_pre=2000,
nms_post=2000,
max_num=2000,
nms_thr=0.7,
min_bbox_size=0),
rcnn=dict(
assigner=dict(
type='MaxIoUAssigner',
pos_iou_thr=0.5,
neg_iou_thr=0.5,
min_pos_iou=0.5,
ignore_iof_thr=-1),
sampler=dict(
type='RandomSampler',
num=512,
pos_fraction=0.25,
neg_pos_ub=-1,
add_gt_as_proposals=True),
mask_size=28,
pos_weight=-1,
debug=False))
test_cfg = dict(
rpn=dict(
nms_across_levels=False,
nms_pre=1000,
nms_post=1000,
max_num=1000,
nms_thr=0.7,
min_bbox_size=0),
rcnn=dict(
score_thr=0.05,
nms=dict(type='nms', iou_thr=0.5),
max_per_img=100,
mask_thr_binary=0.5))
# dataset settings
dataset_type = 'CocoDataset'
data_root = 'data/coco/'
img_norm_cfg = dict(mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375], to_rgb=True)
data = dict(
imgs_per_gpu=2,
workers_per_gpu=2,
train=dict(
type=dataset_type,
ann_file=data_root + 'annotations/instances_train2017.json',
img_prefix=data_root + 'train2017/',
img_scale=(1333, 800),
img_norm_cfg=img_norm_cfg,
size_divisor=32,
flip_ratio=0.5,
with_mask=True,
with_crowd=True,
with_label=True),
val=dict(
type=dataset_type,
ann_file=data_root + 'annotations/instances_val2017.json',
img_prefix=data_root + 'val2017/',
img_scale=(1333, 800),
img_norm_cfg=img_norm_cfg,
size_divisor=32,
flip_ratio=0,
with_mask=True,
with_crowd=True,
with_label=True),
test=dict(
type=dataset_type,
ann_file=data_root + 'annotations/instances_val2017.json',
img_prefix=data_root + 'val2017/',
img_scale=(1333, 800),
img_norm_cfg=img_norm_cfg,
size_divisor=32,
flip_ratio=0,
with_mask=False,
with_label=False,
test_mode=True))
# optimizer
optimizer = dict(type='SGD', lr=0.02, momentum=0.9, weight_decay=0.0001)
optimizer_config = dict(grad_clip=dict(max_norm=35, norm_type=2))
# learning policy
lr_config = dict(
policy='step',
warmup='linear',
warmup_iters=500,
warmup_ratio=1.0 / 3,
step=[8, 11])
checkpoint_config = dict(interval=1)
# yapf:disable
log_config = dict(
interval=50,
hooks=[
dict(type='TextLoggerHook'),
# dict(type='TensorboardLoggerHook')
])
# yapf:enable
# runtime settings
total_epochs = 12
dist_params = dict(backend='nccl')
log_level = 'INFO'
work_dir = './work_dirs/mask_rcnn_hrnetv2p_w32_1x'
load_from = None
resume_from = None
workflow = [('train', 1)]
from .resnet import ResNet, make_res_layer from .resnet import ResNet, make_res_layer
from .resnext import ResNeXt from .resnext import ResNeXt
from .ssd_vgg import SSDVGG from .ssd_vgg import SSDVGG
from .hrnet import HRNet
__all__ = ['ResNet', 'make_res_layer', 'ResNeXt', 'SSDVGG'] __all__ = ['ResNet', 'make_res_layer', 'ResNeXt', 'SSDVGG', 'HRNet']
import logging
import torch.nn as nn
from mmcv.cnn import constant_init, kaiming_init
from mmcv.runner import load_checkpoint
from torch.nn.modules.batchnorm import _BatchNorm
from ..registry import BACKBONES
from ..utils import build_norm_layer, build_conv_layer
from .resnet import BasicBlock, Bottleneck
class HRModule(nn.Module):
""" High-Resolution Module for HRNet. In this module, every branch
has 4 BasicBlocks/Bottlenecks. Fusion/Exchange is in this module.
"""
def __init__(self,
num_branches,
blocks,
num_blocks,
in_channels,
num_channels,
multiscale_output=True,
with_cp=False,
conv_cfg=None,
norm_cfg=dict(type='BN')):
super(HRModule, self).__init__()
self._check_branches(num_branches, num_blocks, in_channels,
num_channels)
self.in_channels = in_channels
self.num_branches = num_branches
self.multiscale_output = multiscale_output
self.norm_cfg = norm_cfg
self.conv_cfg = conv_cfg
self.with_cp = with_cp
self.branches = self._make_branches(num_branches, blocks, num_blocks,
num_channels)
self.fuse_layers = self._make_fuse_layers()
self.relu = nn.ReLU(inplace=False)
def _check_branches(self, num_branches, num_blocks, in_channels,
num_channels):
if num_branches != len(num_blocks):
error_msg = 'NUM_BRANCHES({}) <> NUM_BLOCKS({})'.format(
num_branches, len(num_blocks))
raise ValueError(error_msg)
if num_branches != len(num_channels):
error_msg = 'NUM_BRANCHES({}) <> NUM_CHANNELS({})'.format(
num_branches, len(num_channels))
raise ValueError(error_msg)
if num_branches != len(in_channels):
error_msg = 'NUM_BRANCHES({}) <> NUM_INCHANNELS({})'.format(
num_branches, len(in_channels))
raise ValueError(error_msg)
def _make_one_branch(self,
branch_index,
block,
num_blocks,
num_channels,
stride=1):
downsample = None
if stride != 1 or \
self.in_channels[branch_index] != \
num_channels[branch_index] * block.expansion:
downsample = nn.Sequential(
build_conv_layer(
self.conv_cfg,
self.in_channels[branch_index],
num_channels[branch_index] * block.expansion,
kernel_size=1,
stride=stride,
bias=False),
build_norm_layer(self.norm_cfg, num_channels[branch_index] *
block.expansion)[1])
layers = []
layers.append(
block(
self.in_channels[branch_index],
num_channels[branch_index],
stride,
downsample=downsample,
with_cp=self.with_cp,
norm_cfg=self.norm_cfg,
conv_cfg=self.conv_cfg))
self.in_channels[branch_index] = \
num_channels[branch_index] * block.expansion
for i in range(1, num_blocks[branch_index]):
layers.append(
block(
self.in_channels[branch_index],
num_channels[branch_index],
with_cp=self.with_cp,
norm_cfg=self.norm_cfg,
conv_cfg=self.conv_cfg))
return nn.Sequential(*layers)
def _make_branches(self, num_branches, block, num_blocks, num_channels):
branches = []
for i in range(num_branches):
branches.append(
self._make_one_branch(i, block, num_blocks, num_channels))
return nn.ModuleList(branches)
def _make_fuse_layers(self):
if self.num_branches == 1:
return None
num_branches = self.num_branches
in_channels = self.in_channels
fuse_layers = []
num_out_branches = num_branches if self.multiscale_output else 1
for i in range(num_out_branches):
fuse_layer = []
for j in range(num_branches):
if j > i:
fuse_layer.append(
nn.Sequential(
build_conv_layer(
self.conv_cfg,
in_channels[j],
in_channels[i],
kernel_size=1,
stride=1,
padding=0,
bias=False),
build_norm_layer(self.norm_cfg, in_channels[i])[1],
nn.Upsample(
scale_factor=2**(j - i), mode='nearest')))
elif j == i:
fuse_layer.append(None)
else:
conv_downsamples = []
for k in range(i - j):
if k == i - j - 1:
conv_downsamples.append(
nn.Sequential(
build_conv_layer(
self.conv_cfg,
in_channels[j],
in_channels[i],
kernel_size=3,
stride=2,
padding=1,
bias=False),
build_norm_layer(self.norm_cfg,
in_channels[i])[1]))
else:
conv_downsamples.append(
nn.Sequential(
build_conv_layer(
self.conv_cfg,
in_channels[j],
in_channels[j],
kernel_size=3,
stride=2,
padding=1,
bias=False),
build_norm_layer(self.norm_cfg,
in_channels[j])[1],
nn.ReLU(inplace=False)))
fuse_layer.append(nn.Sequential(*conv_downsamples))
fuse_layers.append(nn.ModuleList(fuse_layer))
return nn.ModuleList(fuse_layers)
def forward(self, x):
if self.num_branches == 1:
return [self.branches[0](x[0])]
for i in range(self.num_branches):
x[i] = self.branches[i](x[i])
x_fuse = []
for i in range(len(self.fuse_layers)):
y = 0
for j in range(self.num_branches):
if i == j:
y += x[j]
else:
y += self.fuse_layers[i][j](x[j])
x_fuse.append(self.relu(y))
return x_fuse
@BACKBONES.register_module
class HRNet(nn.Module):
"""HRNet backbone.
High-Resolution Representations for Labeling Pixels and Regions
arXiv: https://arxiv.org/abs/1904.04514
Args:
extra (dict): detailed configuration for each stage of HRNet.
conv_cfg (dict): dictionary to construct and config conv layer.
norm_cfg (dict): dictionary to construct and config norm layer.
norm_eval (bool): Whether to set norm layers to eval mode, namely,
freeze running stats (mean and var). Note: Effect on Batch Norm
and its variants only.
with_cp (bool): Use checkpoint or not. Using checkpoint will save some
memory while slowing down the training speed.
zero_init_residual (bool): whether to use zero init for last norm layer
in resblocks to let them behave as identity.
"""
blocks_dict = {'BASIC': BasicBlock, 'BOTTLENECK': Bottleneck}
def __init__(self,
extra,
conv_cfg=None,
norm_cfg=dict(type='BN'),
norm_eval=True,
with_cp=False,
zero_init_residual=False):
super(HRNet, self).__init__()
self.extra = extra
self.conv_cfg = conv_cfg
self.norm_cfg = norm_cfg
self.norm_eval = norm_eval
self.with_cp = with_cp
self.zero_init_residual = zero_init_residual
# stem net
self.norm1_name, norm1 = build_norm_layer(self.norm_cfg, 64, postfix=1)
self.norm2_name, norm2 = build_norm_layer(self.norm_cfg, 64, postfix=2)
self.conv1 = build_conv_layer(
self.conv_cfg,
3,
64,
kernel_size=3,
stride=2,
padding=1,
bias=False)
self.add_module(self.norm1_name, norm1)
self.conv2 = build_conv_layer(
self.conv_cfg,
64,
64,
kernel_size=3,
stride=2,
padding=1,
bias=False)
self.add_module(self.norm2_name, norm2)
self.relu = nn.ReLU(inplace=True)
# stage 1
self.stage1_cfg = self.extra['stage1']
num_channels = self.stage1_cfg['num_channels'][0]
block_type = self.stage1_cfg['block']
num_blocks = self.stage1_cfg['num_blocks'][0]
block = self.blocks_dict[block_type]
stage1_out_channels = num_channels * block.expansion
self.layer1 = self._make_layer(block, 64, num_channels, num_blocks)
# stage 2
self.stage2_cfg = self.extra['stage2']
num_channels = self.stage2_cfg['num_channels']
block_type = self.stage2_cfg['block']
block = self.blocks_dict[block_type]
num_channels = [channel * block.expansion for channel in num_channels]
self.transition1 = self._make_transition_layer([stage1_out_channels],
num_channels)
self.stage2, pre_stage_channels = self._make_stage(
self.stage2_cfg, num_channels)
# stage 3
self.stage3_cfg = self.extra['stage3']
num_channels = self.stage3_cfg['num_channels']
block_type = self.stage3_cfg['block']
block = self.blocks_dict[block_type]
num_channels = [channel * block.expansion for channel in num_channels]
self.transition2 = self._make_transition_layer(pre_stage_channels,
num_channels)
self.stage3, pre_stage_channels = self._make_stage(
self.stage3_cfg, num_channels)
# stage 4
self.stage4_cfg = self.extra['stage4']
num_channels = self.stage4_cfg['num_channels']
block_type = self.stage4_cfg['block']
block = self.blocks_dict[block_type]
num_channels = [channel * block.expansion for channel in num_channels]
self.transition3 = self._make_transition_layer(pre_stage_channels,
num_channels)
self.stage4, pre_stage_channels = self._make_stage(
self.stage4_cfg, num_channels)
@property
def norm1(self):
return getattr(self, self.norm1_name)
@property
def norm2(self):
return getattr(self, self.norm2_name)
def _make_transition_layer(self, num_channels_pre_layer,
num_channels_cur_layer):
num_branches_cur = len(num_channels_cur_layer)
num_branches_pre = len(num_channels_pre_layer)
transition_layers = []
for i in range(num_branches_cur):
if i < num_branches_pre:
if num_channels_cur_layer[i] != num_channels_pre_layer[i]:
transition_layers.append(
nn.Sequential(
build_conv_layer(
self.conv_cfg,
num_channels_pre_layer[i],
num_channels_cur_layer[i],
kernel_size=3,
stride=1,
padding=1,
bias=False),
build_norm_layer(self.norm_cfg,
num_channels_cur_layer[i])[1],
nn.ReLU(inplace=True)))
else:
transition_layers.append(None)
else:
conv_downsamples = []
for j in range(i + 1 - num_branches_pre):
in_channels = num_channels_pre_layer[-1]
out_channels = num_channels_cur_layer[i] \
if j == i - num_branches_pre else in_channels
conv_downsamples.append(
nn.Sequential(
build_conv_layer(
self.conv_cfg,
in_channels,
out_channels,
kernel_size=3,
stride=2,
padding=1,
bias=False),
build_norm_layer(self.norm_cfg, out_channels)[1],
nn.ReLU(inplace=True)))
transition_layers.append(nn.Sequential(*conv_downsamples))
return nn.ModuleList(transition_layers)
def _make_layer(self, block, inplanes, planes, blocks, stride=1):
downsample = None
if stride != 1 or inplanes != planes * block.expansion:
downsample = nn.Sequential(
build_conv_layer(
self.conv_cfg,
inplanes,
planes * block.expansion,
kernel_size=1,
stride=stride,
bias=False),
build_norm_layer(self.norm_cfg, planes * block.expansion)[1])
layers = []
layers.append(
block(
inplanes,
planes,
stride,
downsample=downsample,
with_cp=self.with_cp,
norm_cfg=self.norm_cfg,
conv_cfg=self.conv_cfg))
inplanes = planes * block.expansion
for i in range(1, blocks):
layers.append(
block(
inplanes,
planes,
with_cp=self.with_cp,
norm_cfg=self.norm_cfg,
conv_cfg=self.conv_cfg))
return nn.Sequential(*layers)
def _make_stage(self, layer_config, in_channels, multiscale_output=True):
num_modules = layer_config['num_modules']
num_branches = layer_config['num_branches']
num_blocks = layer_config['num_blocks']
num_channels = layer_config['num_channels']
block = self.blocks_dict[layer_config['block']]
hr_modules = []
for i in range(num_modules):
# multi_scale_output is only used for the last module
if not multiscale_output and i == num_modules - 1:
reset_multiscale_output = False
else:
reset_multiscale_output = True
hr_modules.append(
HRModule(
num_branches,
block,
num_blocks,
in_channels,
num_channels,
reset_multiscale_output,
with_cp=self.with_cp,
norm_cfg=self.norm_cfg,
conv_cfg=self.conv_cfg))
return nn.Sequential(*hr_modules), in_channels
def init_weights(self, pretrained=None):
if isinstance(pretrained, str):
logger = logging.getLogger()
load_checkpoint(self, pretrained, strict=False, logger=logger)
elif pretrained is None:
for m in self.modules():
if isinstance(m, nn.Conv2d):
kaiming_init(m)
elif isinstance(m, (_BatchNorm, nn.GroupNorm)):
constant_init(m, 1)
if self.zero_init_residual:
for m in self.modules():
if isinstance(m, Bottleneck):
constant_init(m.norm3, 0)
elif isinstance(m, BasicBlock):
constant_init(m.norm2, 0)
else:
raise TypeError('pretrained must be a str or None')
def forward(self, x):
x = self.conv1(x)
x = self.norm1(x)
x = self.relu(x)
x = self.conv2(x)
x = self.norm2(x)
x = self.relu(x)
x = self.layer1(x)
x_list = []
for i in range(self.stage2_cfg['num_branches']):
if self.transition1[i] is not None:
x_list.append(self.transition1[i](x))
else:
x_list.append(x)
y_list = self.stage2(x_list)
x_list = []
for i in range(self.stage3_cfg['num_branches']):
if self.transition2[i] is not None:
x_list.append(self.transition2[i](y_list[-1]))
else:
x_list.append(y_list[i])
y_list = self.stage3(x_list)
x_list = []
for i in range(self.stage4_cfg['num_branches']):
if self.transition3[i] is not None:
x_list.append(self.transition3[i](y_list[-1]))
else:
x_list.append(y_list[i])
y_list = self.stage4(x_list)
return y_list
def train(self, mode=True):
super(HRNet, self).train(mode)
if mode and self.norm_eval:
for m in self.modules():
# trick: eval have effect on BatchNorm only
if isinstance(m, _BatchNorm):
m.eval()
from .fpn import FPN from .fpn import FPN
from .hrfpn import HRFPN
__all__ = ['FPN'] __all__ = ['FPN', 'HRFPN']
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.checkpoint import checkpoint
from mmcv.cnn.weight_init import caffe2_xavier_init
from ..utils import ConvModule
from ..registry import NECKS
@NECKS.register_module
class HRFPN(nn.Module):
"""HRFPN (High Resolution Feature Pyrmamids)
arXiv: https://arxiv.org/abs/1904.04514
Args:
in_channels (list): number of channels for each branch.
out_channels (int): output channels of feature pyramids.
num_outs (int): number of output stages.
pooling_type (str): pooling for generating feature pyramids
from {MAX, AVG}.
conv_cfg (dict): dictionary to construct and config conv layer.
norm_cfg (dict): dictionary to construct and config norm layer.
with_cp (bool): Use checkpoint or not. Using checkpoint will save some
memory while slowing down the training speed.
"""
def __init__(self,
in_channels,
out_channels,
num_outs=5,
pooling_type='AVG',
conv_cfg=None,
norm_cfg=None,
with_cp=False):
super(HRFPN, self).__init__()
assert isinstance(in_channels, list)
self.in_channels = in_channels
self.out_channels = out_channels
self.num_ins = len(in_channels)
self.num_outs = num_outs
self.with_cp = with_cp
self.conv_cfg = conv_cfg
self.norm_cfg = norm_cfg
self.reduction_conv = ConvModule(
sum(in_channels),
out_channels,
kernel_size=1,
conv_cfg=self.conv_cfg,
activation=None)
self.fpn_convs = nn.ModuleList()
for i in range(self.num_outs):
self.fpn_convs.append(
ConvModule(
out_channels,
out_channels,
kernel_size=3,
padding=1,
conv_cfg=self.conv_cfg,
activation=None))
if pooling_type == 'MAX':
self.pooling = F.max_pool2d
else:
self.pooling = F.avg_pool2d
def init_weights(self):
for m in self.modules():
if isinstance(m, nn.Conv2d):
caffe2_xavier_init(m)
def forward(self, inputs):
assert len(inputs) == self.num_ins
outs = [inputs[0]]
for i in range(1, self.num_ins):
outs.append(
F.interpolate(inputs[i], scale_factor=2**i, mode='bilinear'))
out = torch.cat(outs, dim=1)
if out.requires_grad and self.with_cp:
out = checkpoint(self.reduction_conv, out)
else:
out = self.reduction_conv(out)
outs = [out]
for i in range(1, self.num_outs):
outs.append(self.pooling(out, kernel_size=2**i, stride=2**i))
outputs = []
for i in range(self.num_outs):
if outs[i].requires_grad and self.with_cp:
tmp_out = checkpoint(self.fpn_convs[i], outs[i])
else:
tmp_out = self.fpn_convs[i](outs[i])
outputs.append(tmp_out)
return tuple(outputs)
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment