Commit 108fc9e1 authored by Kai Chen's avatar Kai Chen
Browse files

set up the codebase skeleton (WIP)

parent 6985ef31
import torch
from ._functions import Scatter
from torch.nn.parallel._functions import Scatter as OrigScatter
from detkit.datasets.utils import DataContainer
def scatter(inputs, target_gpus, dim=0):
"""Scatter inputs to target gpus.
The only difference from original :func:`scatter` is to add support for
:type:`~mmdet.DataContainer`.
"""
def scatter_map(obj):
if isinstance(obj, torch.Tensor):
return OrigScatter.apply(target_gpus, None, dim, obj)
if isinstance(obj, DataContainer) and isinstance(obj.data, list):
return Scatter.forward(target_gpus, obj.data)
if isinstance(obj, tuple) and len(obj) > 0:
return list(zip(*map(scatter_map, obj)))
if isinstance(obj, list) and len(obj) > 0:
return list(map(list, zip(*map(scatter_map, obj))))
if isinstance(obj, dict) and len(obj) > 0:
return list(map(type(obj), zip(*map(scatter_map, obj.items()))))
return [obj for targets in target_gpus]
# After scatter_map is called, a scatter_map cell will exist. This cell
# has a reference to the actual function scatter_map, which has references
# to a closure that has a reference to the scatter_map cell (because the
# fn is recursive). To avoid this reference cycle, we set the function to
# None, clearing the cell
try:
return scatter_map(inputs)
finally:
scatter_map = None
def scatter_kwargs(inputs, kwargs, target_gpus, dim=0):
"""Scatter with support for kwargs dictionary"""
inputs = scatter(inputs, target_gpus, dim) if inputs else []
kwargs = scatter(kwargs, target_gpus, dim) if kwargs else []
if len(inputs) < len(kwargs):
inputs.extend([() for _ in range(len(kwargs) - len(inputs))])
elif len(kwargs) < len(inputs):
kwargs.extend([{} for _ in range(len(inputs) - len(kwargs))])
inputs = tuple(inputs)
kwargs = tuple(kwargs)
return inputs, kwargs
from .nms import nms, soft_nms
from .roi_align import RoIAlign, roi_align
from .roi_pool import RoIPool, roi_pool
PYTHON=${PYTHON:-python}
all:
echo "Compiling nms kernels..."
$(PYTHON) setup.py build_ext --inplace
clean:
rm *.so
from .nms_wrapper import nms, soft_nms
# --------------------------------------------------------
# Fast R-CNN
# Copyright (c) 2015 Microsoft
# Licensed under The MIT License [see LICENSE for details]
# Written by Ross Girshick
# --------------------------------------------------------
import numpy as np
cimport numpy as np
cdef inline np.float32_t max(np.float32_t a, np.float32_t b):
return a if a >= b else b
cdef inline np.float32_t min(np.float32_t a, np.float32_t b):
return a if a <= b else b
def cpu_nms(np.ndarray[np.float32_t, ndim=2] dets, np.float thresh):
cdef np.ndarray[np.float32_t, ndim=1] x1 = dets[:, 0]
cdef np.ndarray[np.float32_t, ndim=1] y1 = dets[:, 1]
cdef np.ndarray[np.float32_t, ndim=1] x2 = dets[:, 2]
cdef np.ndarray[np.float32_t, ndim=1] y2 = dets[:, 3]
cdef np.ndarray[np.float32_t, ndim=1] scores = dets[:, 4]
cdef np.ndarray[np.float32_t, ndim=1] areas = (x2 - x1 + 1) * (y2 - y1 + 1)
cdef np.ndarray[np.int_t, ndim=1] order = scores.argsort()[::-1]
cdef int ndets = dets.shape[0]
cdef np.ndarray[np.int_t, ndim=1] suppressed = \
np.zeros((ndets), dtype=np.int)
# nominal indices
cdef int _i, _j
# sorted indices
cdef int i, j
# temp variables for box i's (the box currently under consideration)
cdef np.float32_t ix1, iy1, ix2, iy2, iarea
# variables for computing overlap with box j (lower scoring box)
cdef np.float32_t xx1, yy1, xx2, yy2
cdef np.float32_t w, h
cdef np.float32_t inter, ovr
keep = []
for _i in range(ndets):
i = order[_i]
if suppressed[i] == 1:
continue
keep.append(i)
ix1 = x1[i]
iy1 = y1[i]
ix2 = x2[i]
iy2 = y2[i]
iarea = areas[i]
for _j in range(_i + 1, ndets):
j = order[_j]
if suppressed[j] == 1:
continue
xx1 = max(ix1, x1[j])
yy1 = max(iy1, y1[j])
xx2 = min(ix2, x2[j])
yy2 = min(iy2, y2[j])
w = max(0.0, xx2 - xx1 + 1)
h = max(0.0, yy2 - yy1 + 1)
inter = w * h
ovr = inter / (iarea + areas[j] - inter)
if ovr >= thresh:
suppressed[j] = 1
return keep
# ----------------------------------------------------------
# Soft-NMS: Improving Object Detection With One Line of Code
# Copyright (c) University of Maryland, College Park
# Licensed under The MIT License [see LICENSE for details]
# Written by Navaneeth Bodla and Bharat Singh
# ----------------------------------------------------------
import numpy as np
cimport numpy as np
cdef inline np.float32_t max(np.float32_t a, np.float32_t b):
return a if a >= b else b
cdef inline np.float32_t min(np.float32_t a, np.float32_t b):
return a if a <= b else b
def cpu_soft_nms(
np.ndarray[float, ndim=2] boxes_in,
float sigma=0.5,
float Nt=0.3,
float threshold=0.001,
unsigned int method=0
):
boxes = boxes_in.copy()
cdef unsigned int N = boxes.shape[0]
cdef float iw, ih, box_area
cdef float ua
cdef int pos = 0
cdef float maxscore = 0
cdef int maxpos = 0
cdef float x1, x2, y1, y2, tx1, tx2, ty1, ty2, ts, area, weight, ov
inds = np.arange(N)
for i in range(N):
maxscore = boxes[i, 4]
maxpos = i
tx1 = boxes[i,0]
ty1 = boxes[i,1]
tx2 = boxes[i,2]
ty2 = boxes[i,3]
ts = boxes[i,4]
ti = inds[i]
pos = i + 1
# get max box
while pos < N:
if maxscore < boxes[pos, 4]:
maxscore = boxes[pos, 4]
maxpos = pos
pos = pos + 1
# add max box as a detection
boxes[i,0] = boxes[maxpos,0]
boxes[i,1] = boxes[maxpos,1]
boxes[i,2] = boxes[maxpos,2]
boxes[i,3] = boxes[maxpos,3]
boxes[i,4] = boxes[maxpos,4]
inds[i] = inds[maxpos]
# swap ith box with position of max box
boxes[maxpos,0] = tx1
boxes[maxpos,1] = ty1
boxes[maxpos,2] = tx2
boxes[maxpos,3] = ty2
boxes[maxpos,4] = ts
inds[maxpos] = ti
tx1 = boxes[i,0]
ty1 = boxes[i,1]
tx2 = boxes[i,2]
ty2 = boxes[i,3]
ts = boxes[i,4]
pos = i + 1
# NMS iterations, note that N changes if detection boxes fall below
# threshold
while pos < N:
x1 = boxes[pos, 0]
y1 = boxes[pos, 1]
x2 = boxes[pos, 2]
y2 = boxes[pos, 3]
s = boxes[pos, 4]
area = (x2 - x1 + 1) * (y2 - y1 + 1)
iw = (min(tx2, x2) - max(tx1, x1) + 1)
if iw > 0:
ih = (min(ty2, y2) - max(ty1, y1) + 1)
if ih > 0:
ua = float((tx2 - tx1 + 1) * (ty2 - ty1 + 1) + area - iw * ih)
ov = iw * ih / ua #iou between max box and detection box
if method == 1: # linear
if ov > Nt:
weight = 1 - ov
else:
weight = 1
elif method == 2: # gaussian
weight = np.exp(-(ov * ov)/sigma)
else: # original NMS
if ov > Nt:
weight = 0
else:
weight = 1
boxes[pos, 4] = weight*boxes[pos, 4]
# if box score falls below threshold, discard the box by
# swapping with last box update N
if boxes[pos, 4] < threshold:
boxes[pos,0] = boxes[N-1, 0]
boxes[pos,1] = boxes[N-1, 1]
boxes[pos,2] = boxes[N-1, 2]
boxes[pos,3] = boxes[N-1, 3]
boxes[pos,4] = boxes[N-1, 4]
inds[pos] = inds[N-1]
N = N - 1
pos = pos - 1
pos = pos + 1
return boxes[:N], inds[:N]
\ No newline at end of file
void _nms(int* keep_out, int* num_out, const float* boxes_host, int boxes_num,
int boxes_dim, float nms_overlap_thresh, int device_id, size_t base);
size_t nms_Malloc();
# --------------------------------------------------------
# Faster R-CNN
# Copyright (c) 2015 Microsoft
# Licensed under The MIT License [see LICENSE for details]
# Written by Ross Girshick
# --------------------------------------------------------
import numpy as np
cimport numpy as np
assert sizeof(int) == sizeof(np.int32_t)
cdef extern from "gpu_nms.hpp":
void _nms(np.int32_t*, int*, np.float32_t*, int, int, float, int, size_t) nogil
size_t nms_Malloc() nogil
memory_pool = {}
def gpu_nms(np.ndarray[np.float32_t, ndim=2] dets, np.float thresh,
np.int32_t device_id=0):
cdef int boxes_num = dets.shape[0]
cdef int boxes_dim = dets.shape[1]
cdef int num_out
cdef size_t base
cdef np.ndarray[np.int32_t, ndim=1] \
keep = np.zeros(boxes_num, dtype=np.int32)
cdef np.ndarray[np.float32_t, ndim=1] \
scores = dets[:, 4]
cdef np.ndarray[np.int_t, ndim=1] \
order = scores.argsort()[::-1]
cdef np.ndarray[np.float32_t, ndim=2] \
sorted_dets = dets[order, :]
cdef float cthresh = thresh
if device_id not in memory_pool:
with nogil:
base = nms_Malloc()
memory_pool[device_id] = base
# print "malloc", base
base = memory_pool[device_id]
with nogil:
_nms(&keep[0], &num_out, &sorted_dets[0, 0], boxes_num, boxes_dim, cthresh, device_id, base)
keep = keep[:num_out]
return list(order[keep])
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
from .functions.roi_align import roi_align
from .modules.roi_align import RoIAlign
This diff is collapsed.
This diff is collapsed.
from torch.nn.modules.module import Module
from ..functions.roi_align import RoIAlignFunction
class RoIAlign(Module):
def __init__(self, out_size, spatial_scale, sample_num=0):
super(RoIAlign, self).__init__()
self.out_size = out_size
self.spatial_scale = float(spatial_scale)
self.sample_num = int(sample_num)
def forward(self, features, rois):
return RoIAlignFunction.apply(features, rois, self.out_size,
self.spatial_scale, self.sample_num)
This diff is collapsed.
This diff is collapsed.
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment