rpn_head.py 10.7 KB
Newer Older
Kai Chen's avatar
Kai Chen committed
1
2
3
4
5
6
7
from __future__ import division

import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F

Kai Chen's avatar
Kai Chen committed
8
from mmdet.core import (AnchorGenerator, anchor_target, delta2bbox,
Kai Chen's avatar
Kai Chen committed
9
                        multi_apply, weighted_cross_entropy, weighted_smoothl1,
Kai Chen's avatar
Kai Chen committed
10
11
                        weighted_binary_cross_entropy)
from mmdet.ops import nms
Kai Chen's avatar
Kai Chen committed
12
from ..utils import normal_init
Kai Chen's avatar
Kai Chen committed
13
14
15


class RPNHead(nn.Module):
Kai Chen's avatar
Kai Chen committed
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
    """Network head of RPN.

                                  / - rpn_cls (1x1 conv)
    input - rpn_conv (3x3 conv) -
                                  \ - rpn_reg (1x1 conv)

    Args:
        in_channels (int): Number of channels in the input feature map.
        feat_channels (int): Number of channels for the RPN feature map.
        anchor_scales (Iterable): Anchor scales.
        anchor_ratios (Iterable): Anchor aspect ratios.
        anchor_strides (Iterable): Anchor strides.
        anchor_base_sizes (Iterable): Anchor base sizes.
        target_means (Iterable): Mean values of regression targets.
        target_stds (Iterable): Std values of regression targets.
        use_sigmoid_cls (bool): Whether to use sigmoid loss for classification.
            (softmax by default)
Kai Chen's avatar
Kai Chen committed
33
    """  # noqa: W605
Kai Chen's avatar
Kai Chen committed
34
35
36

    def __init__(self,
                 in_channels,
Kai Chen's avatar
Kai Chen committed
37
                 feat_channels=256,
Kai Chen's avatar
Kai Chen committed
38
39
40
41
42
43
44
45
46
47
48
49
50
                 anchor_scales=[8, 16, 32],
                 anchor_ratios=[0.5, 1.0, 2.0],
                 anchor_strides=[4, 8, 16, 32, 64],
                 anchor_base_sizes=None,
                 target_means=(.0, .0, .0, .0),
                 target_stds=(1.0, 1.0, 1.0, 1.0),
                 use_sigmoid_cls=False):
        super(RPNHead, self).__init__()
        self.in_channels = in_channels
        self.feat_channels = feat_channels
        self.anchor_scales = anchor_scales
        self.anchor_ratios = anchor_ratios
        self.anchor_strides = anchor_strides
Kai Chen's avatar
Kai Chen committed
51
52
        self.anchor_base_sizes = list(
            anchor_strides) if anchor_base_sizes is None else anchor_base_sizes
Kai Chen's avatar
Kai Chen committed
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
        self.target_means = target_means
        self.target_stds = target_stds
        self.use_sigmoid_cls = use_sigmoid_cls

        self.anchor_generators = []
        for anchor_base in self.anchor_base_sizes:
            self.anchor_generators.append(
                AnchorGenerator(anchor_base, anchor_scales, anchor_ratios))
        self.rpn_conv = nn.Conv2d(in_channels, feat_channels, 3, padding=1)
        self.relu = nn.ReLU(inplace=True)
        self.num_anchors = len(self.anchor_ratios) * len(self.anchor_scales)
        out_channels = (self.num_anchors
                        if self.use_sigmoid_cls else self.num_anchors * 2)
        self.rpn_cls = nn.Conv2d(feat_channels, out_channels, 1)
        self.rpn_reg = nn.Conv2d(feat_channels, self.num_anchors * 4, 1)
        self.debug_imgs = None

    def init_weights(self):
        normal_init(self.rpn_conv, std=0.01)
        normal_init(self.rpn_cls, std=0.01)
        normal_init(self.rpn_reg, std=0.01)

    def forward_single(self, x):
        rpn_feat = self.relu(self.rpn_conv(x))
        rpn_cls_score = self.rpn_cls(rpn_feat)
        rpn_bbox_pred = self.rpn_reg(rpn_feat)
        return rpn_cls_score, rpn_bbox_pred

    def forward(self, feats):
        return multi_apply(self.forward_single, feats)

Kai Chen's avatar
Kai Chen committed
84
    def get_anchors(self, featmap_sizes, img_metas):
Kai Chen's avatar
Kai Chen committed
85
86
87
88
89
90
91
92
        """Get anchors according to feature map sizes.

        Args:
            featmap_sizes (list[tuple]): Multi-level feature map sizes.
            img_metas (list[dict]): Image meta info.

        Returns:
            tuple: anchors of each image, valid flags of each image
Kai Chen's avatar
Kai Chen committed
93
        """
Kai Chen's avatar
Kai Chen committed
94
95
96
97
98
99
100
        num_imgs = len(img_metas)
        num_levels = len(featmap_sizes)

        # since feature map sizes of all images are the same, we only compute
        # anchors for one time
        multi_level_anchors = []
        for i in range(num_levels):
Kai Chen's avatar
Kai Chen committed
101
            anchors = self.anchor_generators[i].grid_anchors(
Kai Chen's avatar
Kai Chen committed
102
103
104
105
106
107
108
109
110
111
112
113
114
115
                featmap_sizes[i], self.anchor_strides[i])
            multi_level_anchors.append(anchors)
        anchor_list = [multi_level_anchors for _ in range(num_imgs)]

        # for each image, we compute valid flags of multi level anchors
        valid_flag_list = []
        for img_id, img_meta in enumerate(img_metas):
            multi_level_flags = []
            for i in range(num_levels):
                anchor_stride = self.anchor_strides[i]
                feat_h, feat_w = featmap_sizes[i]
                h, w, _ = img_meta['pad_shape']
                valid_feat_h = min(int(np.ceil(h / anchor_stride)), feat_h)
                valid_feat_w = min(int(np.ceil(w / anchor_stride)), feat_w)
Kai Chen's avatar
Kai Chen committed
116
                flags = self.anchor_generators[i].valid_flags(
Kai Chen's avatar
Kai Chen committed
117
118
119
120
                    (feat_h, feat_w), (valid_feat_h, valid_feat_w))
                multi_level_flags.append(flags)
            valid_flag_list.append(multi_level_flags)

Kai Chen's avatar
Kai Chen committed
121
122
123
124
        return anchor_list, valid_flag_list

    def loss_single(self, rpn_cls_score, rpn_bbox_pred, labels, label_weights,
                    bbox_targets, bbox_weights, num_total_samples, cfg):
Kai Chen's avatar
Kai Chen committed
125
        # classification loss
Kai Chen's avatar
Kai Chen committed
126
127
128
129
130
        labels = labels.contiguous().view(-1)
        label_weights = label_weights.contiguous().view(-1)
        if self.use_sigmoid_cls:
            rpn_cls_score = rpn_cls_score.permute(0, 2, 3,
                                                  1).contiguous().view(-1)
Kai Chen's avatar
Kai Chen committed
131
            criterion = weighted_binary_cross_entropy
Kai Chen's avatar
Kai Chen committed
132
133
134
        else:
            rpn_cls_score = rpn_cls_score.permute(0, 2, 3,
                                                  1).contiguous().view(-1, 2)
Kai Chen's avatar
Kai Chen committed
135
136
137
138
139
140
            criterion = weighted_cross_entropy
        loss_cls = criterion(
            rpn_cls_score, labels, label_weights, avg_factor=num_total_samples)
        # regression loss
        bbox_targets = bbox_targets.contiguous().view(-1, 4)
        bbox_weights = bbox_weights.contiguous().view(-1, 4)
Kai Chen's avatar
Kai Chen committed
141
142
143
144
145
146
147
        rpn_bbox_pred = rpn_bbox_pred.permute(0, 2, 3, 1).contiguous().view(
            -1, 4)
        loss_reg = weighted_smoothl1(
            rpn_bbox_pred,
            bbox_targets,
            bbox_weights,
            beta=cfg.smoothl1_beta,
Kai Chen's avatar
Kai Chen committed
148
            avg_factor=num_total_samples)
Kai Chen's avatar
Kai Chen committed
149
150
151
152
153
154
155
156
157
        return loss_cls, loss_reg

    def loss(self, rpn_cls_scores, rpn_bbox_preds, gt_bboxes, img_shapes, cfg):
        featmap_sizes = [featmap.size()[-2:] for featmap in rpn_cls_scores]
        assert len(featmap_sizes) == len(self.anchor_generators)

        anchor_list, valid_flag_list = self.get_anchors(
            featmap_sizes, img_shapes)
        cls_reg_targets = anchor_target(
Kai Chen's avatar
Kai Chen committed
158
            anchor_list, valid_flag_list, gt_bboxes, img_shapes,
Kai Chen's avatar
Kai Chen committed
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
            self.target_means, self.target_stds, cfg)
        if cls_reg_targets is None:
            return None
        (labels_list, label_weights_list, bbox_targets_list, bbox_weights_list,
         num_total_samples) = cls_reg_targets
        losses_cls, losses_reg = multi_apply(
            self.loss_single,
            rpn_cls_scores,
            rpn_bbox_preds,
            labels_list,
            label_weights_list,
            bbox_targets_list,
            bbox_weights_list,
            num_total_samples=num_total_samples,
            cfg=cfg)
        return dict(loss_rpn_cls=losses_cls, loss_rpn_reg=losses_reg)

Kai Chen's avatar
Kai Chen committed
176
177
    def get_proposals(self, rpn_cls_scores, rpn_bbox_preds, img_meta, cfg):
        num_imgs = len(img_meta)
Kai Chen's avatar
Kai Chen committed
178
179
180
181
182
183
184
        featmap_sizes = [featmap.size()[-2:] for featmap in rpn_cls_scores]
        mlvl_anchors = [
            self.anchor_generators[idx].grid_anchors(featmap_sizes[idx],
                                                     self.anchor_strides[idx])
            for idx in range(len(featmap_sizes))
        ]
        proposal_list = []
Kai Chen's avatar
Kai Chen committed
185
        for img_id in range(num_imgs):
Kai Chen's avatar
Kai Chen committed
186
187
188
189
190
191
192
193
194
195
196
            rpn_cls_score_list = [
                rpn_cls_scores[idx][img_id].detach()
                for idx in range(len(rpn_cls_scores))
            ]
            rpn_bbox_pred_list = [
                rpn_bbox_preds[idx][img_id].detach()
                for idx in range(len(rpn_bbox_preds))
            ]
            assert len(rpn_cls_score_list) == len(rpn_bbox_pred_list)
            proposals = self._get_proposals_single(
                rpn_cls_score_list, rpn_bbox_pred_list, mlvl_anchors,
Kai Chen's avatar
Kai Chen committed
197
                img_meta[img_id]['img_shape'], cfg)
Kai Chen's avatar
Kai Chen committed
198
199
200
201
202
203
204
205
206
207
208
209
210
211
            proposal_list.append(proposals)
        return proposal_list

    def _get_proposals_single(self, rpn_cls_scores, rpn_bbox_preds,
                              mlvl_anchors, img_shape, cfg):
        mlvl_proposals = []
        for idx in range(len(rpn_cls_scores)):
            rpn_cls_score = rpn_cls_scores[idx]
            rpn_bbox_pred = rpn_bbox_preds[idx]
            assert rpn_cls_score.size()[-2:] == rpn_bbox_pred.size()[-2:]
            anchors = mlvl_anchors[idx]
            if self.use_sigmoid_cls:
                rpn_cls_score = rpn_cls_score.permute(1, 2,
                                                      0).contiguous().view(-1)
Kai Chen's avatar
Kai Chen committed
212
                rpn_cls_prob = rpn_cls_score.sigmoid()
Kai Chen's avatar
Kai Chen committed
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
                scores = rpn_cls_prob
            else:
                rpn_cls_score = rpn_cls_score.permute(1, 2,
                                                      0).contiguous().view(
                                                          -1, 2)
                rpn_cls_prob = F.softmax(rpn_cls_score, dim=1)
                scores = rpn_cls_prob[:, 1]
            rpn_bbox_pred = rpn_bbox_pred.permute(1, 2, 0).contiguous().view(
                -1, 4)
            _, order = scores.sort(0, descending=True)
            if cfg.nms_pre > 0:
                order = order[:cfg.nms_pre]
                rpn_bbox_pred = rpn_bbox_pred[order, :]
                anchors = anchors[order, :]
                scores = scores[order]
Kai Chen's avatar
Kai Chen committed
228
229
            proposals = delta2bbox(anchors, rpn_bbox_pred, self.target_means,
                                   self.target_stds, img_shape)
Kai Chen's avatar
Kai Chen committed
230
231
232
233
234
235
236
            w = proposals[:, 2] - proposals[:, 0] + 1
            h = proposals[:, 3] - proposals[:, 1] + 1
            valid_inds = torch.nonzero((w >= cfg.min_bbox_size) &
                                       (h >= cfg.min_bbox_size)).squeeze()
            proposals = proposals[valid_inds, :]
            scores = scores[valid_inds]
            proposals = torch.cat([proposals, scores.unsqueeze(-1)], dim=-1)
237
238
            proposals, _ = nms(proposals, cfg.nms_thr)
            proposals = proposals[:cfg.nms_post, :]
Kai Chen's avatar
Kai Chen committed
239
240
241
            mlvl_proposals.append(proposals)
        proposals = torch.cat(mlvl_proposals, 0)
        if cfg.nms_across_levels:
242
243
            proposals, _ = nms(proposals, cfg.nms_thr)
            proposals = proposals[:cfg.max_num, :]
Kai Chen's avatar
Kai Chen committed
244
245
246
247
248
249
250
        else:
            scores = proposals[:, 4]
            _, order = scores.sort(0, descending=True)
            num = min(cfg.max_num, proposals.shape[0])
            order = order[:num]
            proposals = proposals[order, :]
        return proposals