rpn_head.py 10.1 KB
Newer Older
Kai Chen's avatar
Kai Chen committed
1
2
3
4
5
6
7
8
9
10
11
from __future__ import division

import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F

from mmdet.core import (AnchorGenerator, anchor_target, bbox_transform_inv,
                        weighted_cross_entropy, weighted_smoothl1,
                        weighted_binary_cross_entropy)
from mmdet.ops import nms
Kai Chen's avatar
Kai Chen committed
12
from ..utils import multi_apply, normal_init
Kai Chen's avatar
Kai Chen committed
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67


class RPNHead(nn.Module):

    def __init__(self,
                 in_channels,
                 feat_channels=512,
                 coarsest_stride=32,
                 anchor_scales=[8, 16, 32],
                 anchor_ratios=[0.5, 1.0, 2.0],
                 anchor_strides=[4, 8, 16, 32, 64],
                 anchor_base_sizes=None,
                 target_means=(.0, .0, .0, .0),
                 target_stds=(1.0, 1.0, 1.0, 1.0),
                 use_sigmoid_cls=False):
        super(RPNHead, self).__init__()
        self.in_channels = in_channels
        self.feat_channels = feat_channels
        self.coarsest_stride = coarsest_stride
        self.anchor_scales = anchor_scales
        self.anchor_ratios = anchor_ratios
        self.anchor_strides = anchor_strides
        self.anchor_base_sizes = anchor_strides.copy(
        ) if anchor_base_sizes is None else anchor_base_sizes
        self.target_means = target_means
        self.target_stds = target_stds
        self.use_sigmoid_cls = use_sigmoid_cls

        self.anchor_generators = []
        for anchor_base in self.anchor_base_sizes:
            self.anchor_generators.append(
                AnchorGenerator(anchor_base, anchor_scales, anchor_ratios))
        self.rpn_conv = nn.Conv2d(in_channels, feat_channels, 3, padding=1)
        self.relu = nn.ReLU(inplace=True)
        self.num_anchors = len(self.anchor_ratios) * len(self.anchor_scales)
        out_channels = (self.num_anchors
                        if self.use_sigmoid_cls else self.num_anchors * 2)
        self.rpn_cls = nn.Conv2d(feat_channels, out_channels, 1)
        self.rpn_reg = nn.Conv2d(feat_channels, self.num_anchors * 4, 1)
        self.debug_imgs = None

    def init_weights(self):
        normal_init(self.rpn_conv, std=0.01)
        normal_init(self.rpn_cls, std=0.01)
        normal_init(self.rpn_reg, std=0.01)

    def forward_single(self, x):
        rpn_feat = self.relu(self.rpn_conv(x))
        rpn_cls_score = self.rpn_cls(rpn_feat)
        rpn_bbox_pred = self.rpn_reg(rpn_feat)
        return rpn_cls_score, rpn_bbox_pred

    def forward(self, feats):
        return multi_apply(self.forward_single, feats)

Kai Chen's avatar
Kai Chen committed
68
    def get_anchors(self, featmap_sizes, img_metas):
Kai Chen's avatar
Kai Chen committed
69
70
71
72
73
        """Get anchors given a list of feature map sizes, and get valid flags
        at the same time. (Extra padding regions should be marked as invalid)
        """
        # calculate actual image shapes
        padded_img_shapes = []
Kai Chen's avatar
Kai Chen committed
74
75
        for img_meta in img_metas:
            h, w = img_meta['img_shape'][:2]
Kai Chen's avatar
Kai Chen committed
76
77
78
79
80
81
82
83
84
            padded_h = int(
                np.ceil(h / self.coarsest_stride) * self.coarsest_stride)
            padded_w = int(
                np.ceil(w / self.coarsest_stride) * self.coarsest_stride)
            padded_img_shapes.append((padded_h, padded_w))
        # generate anchors for different feature levels
        # len = feature levels
        anchor_list = []
        # len = imgs per gpu
Kai Chen's avatar
Kai Chen committed
85
        valid_flag_list = [[] for _ in range(len(img_metas))]
Kai Chen's avatar
Kai Chen committed
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
        for i in range(len(featmap_sizes)):
            anchor_stride = self.anchor_strides[i]
            anchors = self.anchor_generators[i].grid_anchors(
                featmap_sizes[i], anchor_stride)
            anchor_list.append(anchors)
            # for each image in this feature level, get valid flags
            featmap_size = featmap_sizes[i]
            for img_id, (h, w) in enumerate(padded_img_shapes):
                valid_feat_h = min(
                    int(np.ceil(h / anchor_stride)), featmap_size[0])
                valid_feat_w = min(
                    int(np.ceil(w / anchor_stride)), featmap_size[1])
                flags = self.anchor_generators[i].valid_flags(
                    featmap_size, (valid_feat_h, valid_feat_w))
                valid_flag_list[img_id].append(flags)
        return anchor_list, valid_flag_list

    def loss_single(self, rpn_cls_score, rpn_bbox_pred, labels, label_weights,
                    bbox_targets, bbox_weights, num_total_samples, cfg):
Kai Chen's avatar
Kai Chen committed
105
        # classification loss
Kai Chen's avatar
Kai Chen committed
106
107
108
109
110
        labels = labels.contiguous().view(-1)
        label_weights = label_weights.contiguous().view(-1)
        if self.use_sigmoid_cls:
            rpn_cls_score = rpn_cls_score.permute(0, 2, 3,
                                                  1).contiguous().view(-1)
Kai Chen's avatar
Kai Chen committed
111
            criterion = weighted_binary_cross_entropy
Kai Chen's avatar
Kai Chen committed
112
113
114
        else:
            rpn_cls_score = rpn_cls_score.permute(0, 2, 3,
                                                  1).contiguous().view(-1, 2)
Kai Chen's avatar
Kai Chen committed
115
116
117
118
119
120
            criterion = weighted_cross_entropy
        loss_cls = criterion(
            rpn_cls_score, labels, label_weights, avg_factor=num_total_samples)
        # regression loss
        bbox_targets = bbox_targets.contiguous().view(-1, 4)
        bbox_weights = bbox_weights.contiguous().view(-1, 4)
Kai Chen's avatar
Kai Chen committed
121
122
123
124
125
126
127
        rpn_bbox_pred = rpn_bbox_pred.permute(0, 2, 3, 1).contiguous().view(
            -1, 4)
        loss_reg = weighted_smoothl1(
            rpn_bbox_pred,
            bbox_targets,
            bbox_weights,
            beta=cfg.smoothl1_beta,
Kai Chen's avatar
Kai Chen committed
128
            avg_factor=num_total_samples)
Kai Chen's avatar
Kai Chen committed
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
        return loss_cls, loss_reg

    def loss(self, rpn_cls_scores, rpn_bbox_preds, gt_bboxes, img_shapes, cfg):
        featmap_sizes = [featmap.size()[-2:] for featmap in rpn_cls_scores]
        assert len(featmap_sizes) == len(self.anchor_generators)

        anchor_list, valid_flag_list = self.get_anchors(
            featmap_sizes, img_shapes)
        cls_reg_targets = anchor_target(
            anchor_list, valid_flag_list, featmap_sizes, gt_bboxes, img_shapes,
            self.target_means, self.target_stds, cfg)
        if cls_reg_targets is None:
            return None
        (labels_list, label_weights_list, bbox_targets_list, bbox_weights_list,
         num_total_samples) = cls_reg_targets
        losses_cls, losses_reg = multi_apply(
            self.loss_single,
            rpn_cls_scores,
            rpn_bbox_preds,
            labels_list,
            label_weights_list,
            bbox_targets_list,
            bbox_weights_list,
            num_total_samples=num_total_samples,
            cfg=cfg)
        return dict(loss_rpn_cls=losses_cls, loss_rpn_reg=losses_reg)

Kai Chen's avatar
Kai Chen committed
156
157
    def get_proposals(self, rpn_cls_scores, rpn_bbox_preds, img_meta, cfg):
        num_imgs = len(img_meta)
Kai Chen's avatar
Kai Chen committed
158
159
160
161
162
163
164
        featmap_sizes = [featmap.size()[-2:] for featmap in rpn_cls_scores]
        mlvl_anchors = [
            self.anchor_generators[idx].grid_anchors(featmap_sizes[idx],
                                                     self.anchor_strides[idx])
            for idx in range(len(featmap_sizes))
        ]
        proposal_list = []
Kai Chen's avatar
Kai Chen committed
165
        for img_id in range(num_imgs):
Kai Chen's avatar
Kai Chen committed
166
167
168
169
170
171
172
173
174
175
176
            rpn_cls_score_list = [
                rpn_cls_scores[idx][img_id].detach()
                for idx in range(len(rpn_cls_scores))
            ]
            rpn_bbox_pred_list = [
                rpn_bbox_preds[idx][img_id].detach()
                for idx in range(len(rpn_bbox_preds))
            ]
            assert len(rpn_cls_score_list) == len(rpn_bbox_pred_list)
            proposals = self._get_proposals_single(
                rpn_cls_score_list, rpn_bbox_pred_list, mlvl_anchors,
Kai Chen's avatar
Kai Chen committed
177
                img_meta[img_id]['img_shape'], cfg)
Kai Chen's avatar
Kai Chen committed
178
179
180
181
182
183
184
185
186
187
188
189
190
191
            proposal_list.append(proposals)
        return proposal_list

    def _get_proposals_single(self, rpn_cls_scores, rpn_bbox_preds,
                              mlvl_anchors, img_shape, cfg):
        mlvl_proposals = []
        for idx in range(len(rpn_cls_scores)):
            rpn_cls_score = rpn_cls_scores[idx]
            rpn_bbox_pred = rpn_bbox_preds[idx]
            assert rpn_cls_score.size()[-2:] == rpn_bbox_pred.size()[-2:]
            anchors = mlvl_anchors[idx]
            if self.use_sigmoid_cls:
                rpn_cls_score = rpn_cls_score.permute(1, 2,
                                                      0).contiguous().view(-1)
Kai Chen's avatar
Kai Chen committed
192
                rpn_cls_prob = rpn_cls_score.sigmoid()
Kai Chen's avatar
Kai Chen committed
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
                scores = rpn_cls_prob
            else:
                rpn_cls_score = rpn_cls_score.permute(1, 2,
                                                      0).contiguous().view(
                                                          -1, 2)
                rpn_cls_prob = F.softmax(rpn_cls_score, dim=1)
                scores = rpn_cls_prob[:, 1]
            rpn_bbox_pred = rpn_bbox_pred.permute(1, 2, 0).contiguous().view(
                -1, 4)
            _, order = scores.sort(0, descending=True)
            if cfg.nms_pre > 0:
                order = order[:cfg.nms_pre]
                rpn_bbox_pred = rpn_bbox_pred[order, :]
                anchors = anchors[order, :]
                scores = scores[order]
            proposals = bbox_transform_inv(anchors, rpn_bbox_pred,
                                           self.target_means, self.target_stds,
                                           img_shape)
            w = proposals[:, 2] - proposals[:, 0] + 1
            h = proposals[:, 3] - proposals[:, 1] + 1
            valid_inds = torch.nonzero((w >= cfg.min_bbox_size) &
                                       (h >= cfg.min_bbox_size)).squeeze()
            proposals = proposals[valid_inds, :]
            scores = scores[valid_inds]
            proposals = torch.cat([proposals, scores.unsqueeze(-1)], dim=-1)
            nms_keep = nms(proposals, cfg.nms_thr)[:cfg.nms_post]
            proposals = proposals[nms_keep, :]
            mlvl_proposals.append(proposals)
        proposals = torch.cat(mlvl_proposals, 0)
        if cfg.nms_across_levels:
            nms_keep = nms(proposals, cfg.nms_thr)[:cfg.max_num]
            proposals = proposals[nms_keep, :]
        else:
            scores = proposals[:, 4]
            _, order = scores.sort(0, descending=True)
            num = min(cfg.max_num, proposals.shape[0])
            order = order[:num]
            proposals = proposals[order, :]
        return proposals