2023-06-28 04:46:23.440132 cuda 2023-06-28 04:46:50.558957 Train: epoch: 1 batch: 0/4, loss: 0.691489 2023-06-28 04:48:16.880243 Validation: avg loss: 0.6866, avg acc: 57.1429% 2023-06-28 04:48:44.158985 Train: epoch: 2 batch: 0/4, loss: 0.674378 2023-06-28 04:50:10.500619 Validation: avg loss: 0.6850, avg acc: 57.1429% 2023-06-28 04:50:37.836617 Train: epoch: 3 batch: 0/4, loss: 0.667162 2023-06-28 04:52:04.252311 Validation: avg loss: 0.6884, avg acc: 57.1429% 2023-06-28 04:52:31.548462 Train: epoch: 4 batch: 0/4, loss: 0.669279 2023-06-28 04:53:57.987208 Validation: avg loss: 0.6909, avg acc: 57.1429% 2023-06-28 04:54:25.244756 Train: epoch: 5 batch: 0/4, loss: 0.654708 2023-06-28 04:55:51.453288 Validation: avg loss: 0.6985, avg acc: 42.8571% 2023-06-28 04:56:18.675808 Train: epoch: 6 batch: 0/4, loss: 0.641800 2023-06-28 04:57:44.926128 Validation: avg loss: 0.7082, avg acc: 42.8571% 2023-06-28 04:58:12.243071 Train: epoch: 7 batch: 0/4, loss: 0.609780 2023-06-28 04:59:38.667862 Validation: avg loss: 0.7572, avg acc: 42.8571% 2023-06-28 05:00:05.952760 Train: epoch: 8 batch: 0/4, loss: 0.610657 2023-06-28 05:01:32.412124 Validation: avg loss: 0.7486, avg acc: 42.8571% 2023-06-28 05:01:59.771772 Train: epoch: 9 batch: 0/4, loss: 0.537623 2023-06-28 05:03:26.168257 Validation: avg loss: 0.7688, avg acc: 42.8571% 2023-06-28 05:03:53.350470 Train: epoch: 10 batch: 0/4, loss: 0.463665 2023-06-28 05:05:19.505165 Validation: avg loss: 0.7831, avg acc: 42.8571% 2023-06-28 05:05:46.816497 Train: epoch: 11 batch: 0/4, loss: 0.396349 2023-06-28 05:07:13.284678 Validation: avg loss: 0.9021, avg acc: 42.8571% 2023-06-28 05:07:40.434572 Train: epoch: 12 batch: 0/4, loss: 0.377895 2023-06-28 05:09:06.683140 Validation: avg loss: 0.7624, avg acc: 46.6667% 2023-06-28 05:09:34.038597 Train: epoch: 13 batch: 0/4, loss: 0.292639 2023-06-28 05:11:00.604442 Validation: avg loss: 0.7629, avg acc: 52.3810% 2023-06-28 05:11:27.927078 Train: epoch: 14 batch: 0/4, loss: 0.163924 2023-06-28 05:12:54.096479 Validation: avg loss: 0.6852, avg acc: 63.8095% 2023-06-28 05:13:21.196518 Train: epoch: 15 batch: 0/4, loss: 0.157839 2023-06-28 05:14:46.992535 Validation: avg loss: 0.6054, avg acc: 67.6190% 2023-06-28 05:15:13.921136 Train: epoch: 16 batch: 0/4, loss: 0.075988 2023-06-28 05:16:39.555716 Validation: avg loss: 0.5625, avg acc: 69.5238% 2023-06-28 05:17:06.638224 Train: epoch: 17 batch: 0/4, loss: 0.054838 2023-06-28 05:18:32.374108 Validation: avg loss: 0.6063, avg acc: 71.4286% 2023-06-28 05:18:59.483689 Train: epoch: 18 batch: 0/4, loss: 0.033897 2023-06-28 05:20:25.270910 Validation: avg loss: 0.6640, avg acc: 72.3810% 2023-06-28 05:20:52.305933 Train: epoch: 19 batch: 0/4, loss: 0.029342 2023-06-28 05:22:18.039158 Validation: avg loss: 0.6759, avg acc: 68.5714% 2023-06-28 05:22:45.087474 Train: epoch: 20 batch: 0/4, loss: 0.035418 2023-06-28 05:24:10.724896 Validation: avg loss: 0.7139, avg acc: 69.5238% 2023-06-28 05:24:37.705066 Train: epoch: 21 batch: 0/4, loss: 0.010324 2023-06-28 05:26:03.452868 Validation: avg loss: 0.7171, avg acc: 70.4762% 2023-06-28 05:26:30.429953 Train: epoch: 22 batch: 0/4, loss: 0.015367 2023-06-28 05:27:56.099289 Validation: avg loss: 0.7221, avg acc: 73.3333% 2023-06-28 05:28:23.217156 Train: epoch: 23 batch: 0/4, loss: 0.012628 2023-06-28 05:29:49.049346 Validation: avg loss: 0.7451, avg acc: 73.3333% 2023-06-28 05:30:16.076247 Train: epoch: 24 batch: 0/4, loss: 0.009900 2023-06-28 05:31:41.606001 Validation: avg loss: 0.7922, avg acc: 72.3810% 2023-06-28 05:32:08.613232 Train: epoch: 25 batch: 0/4, loss: 0.006447 2023-06-28 05:33:34.383115 Validation: avg loss: 0.8139, avg acc: 73.3333% 2023-06-28 05:34:01.440329 Train: epoch: 26 batch: 0/4, loss: 0.003593 2023-06-28 05:35:27.214247 Validation: avg loss: 0.8530, avg acc: 72.3810% 2023-06-28 05:35:54.248027 Train: epoch: 27 batch: 0/4, loss: 0.007230 2023-06-28 05:37:19.865013 Validation: avg loss: 0.8743, avg acc: 72.3810% 2023-06-28 05:37:47.041858 Train: epoch: 28 batch: 0/4, loss: 0.014971 2023-06-28 05:39:12.733950 Validation: avg loss: 0.9495, avg acc: 73.3333% 2023-06-28 05:39:39.728747 Train: epoch: 29 batch: 0/4, loss: 0.002754 2023-06-28 05:41:05.347019 Validation: avg loss: 0.9543, avg acc: 73.3333% 2023-06-28 05:41:32.373508 Train: epoch: 30 batch: 0/4, loss: 0.004897 2023-06-28 05:42:58.019471 Validation: avg loss: 0.9222, avg acc: 74.2857% 2023-06-28 05:43:25.065844 Train: epoch: 31 batch: 0/4, loss: 0.003625 2023-06-28 05:44:50.729601 Validation: avg loss: 0.8726, avg acc: 74.2857% 2023-06-28 05:45:17.702695 Train: epoch: 32 batch: 0/4, loss: 0.002928 2023-06-28 05:46:43.493191 Validation: avg loss: 0.8650, avg acc: 73.3333% 2023-06-28 05:47:10.572700 Train: epoch: 33 batch: 0/4, loss: 0.001931 2023-06-28 05:48:36.373079 Validation: avg loss: 0.8965, avg acc: 74.2857% 2023-06-28 05:49:03.383010 Train: epoch: 34 batch: 0/4, loss: 0.004791 2023-06-28 05:50:29.182334 Validation: avg loss: 0.9346, avg acc: 70.4762% 2023-06-28 05:50:56.184084 Train: epoch: 35 batch: 0/4, loss: 0.002151 2023-06-28 05:52:22.037438 Validation: avg loss: 0.9426, avg acc: 70.4762% 2023-06-28 05:52:49.036990 Train: epoch: 36 batch: 0/4, loss: 0.002439 2023-06-28 05:54:14.673797 Validation: avg loss: 0.9517, avg acc: 72.3810% 2023-06-28 05:54:41.811814 Train: epoch: 37 batch: 0/4, loss: 0.001436 2023-06-28 05:56:07.659605 Validation: avg loss: 0.9766, avg acc: 73.3333% 2023-06-28 05:56:34.777159 Train: epoch: 38 batch: 0/4, loss: 0.002025 2023-06-28 05:58:00.343044 Validation: avg loss: 0.9874, avg acc: 72.3810% 2023-06-28 05:58:27.390861 Train: epoch: 39 batch: 0/4, loss: 0.001200 2023-06-28 05:59:53.142386 Validation: avg loss: 0.9936, avg acc: 72.3810% 2023-06-28 06:00:20.120731 Train: epoch: 40 batch: 0/4, loss: 0.001336 2023-06-28 06:01:45.720076 Validation: avg loss: 0.9944, avg acc: 72.3810% 2023-06-28 06:02:12.778589 Train: epoch: 41 batch: 0/4, loss: 0.002025 2023-06-28 06:03:38.405168 Validation: avg loss: 0.9941, avg acc: 73.3333% 2023-06-28 06:04:05.425404 Train: epoch: 42 batch: 0/4, loss: 0.001469 2023-06-28 06:05:31.098490 Validation: avg loss: 0.9989, avg acc: 72.3810% 2023-06-28 06:05:58.143698 Train: epoch: 43 batch: 0/4, loss: 0.001311 2023-06-28 06:07:23.795089 Validation: avg loss: 0.9964, avg acc: 72.3810% 2023-06-28 06:07:50.844074 Train: epoch: 44 batch: 0/4, loss: 0.001091 2023-06-28 06:09:16.575192 Validation: avg loss: 0.9972, avg acc: 72.3810% 2023-06-28 06:09:43.613977 Train: epoch: 45 batch: 0/4, loss: 0.000973 2023-06-28 06:11:09.280542 Validation: avg loss: 0.9962, avg acc: 72.3810% 2023-06-28 06:11:36.301500 Train: epoch: 46 batch: 0/4, loss: 0.000905 2023-06-28 06:13:01.949403 Validation: avg loss: 0.9972, avg acc: 72.3810% 2023-06-28 06:13:28.916153 Train: epoch: 47 batch: 0/4, loss: 0.000894 2023-06-28 06:14:54.634029 Validation: avg loss: 1.0015, avg acc: 72.3810% 2023-06-28 06:15:21.721983 Train: epoch: 48 batch: 0/4, loss: 0.000730 2023-06-28 06:16:47.379171 Validation: avg loss: 1.0091, avg acc: 72.3810% 2023-06-28 06:17:14.407063 Train: epoch: 49 batch: 0/4, loss: 0.001016 2023-06-28 06:18:40.122032 Validation: avg loss: 1.0107, avg acc: 72.3810% 2023-06-28 06:19:07.198357 Train: epoch: 50 batch: 0/4, loss: 0.000575 2023-06-28 06:20:32.774520 Validation: avg loss: 1.0108, avg acc: 72.3810%