2023-06-28 03:11:41.369838 cuda 2023-06-28 03:12:08.489829 Train: epoch: 1 batch: 0/4, loss: 0.693009 2023-06-28 03:13:35.046750 Validation: avg loss: 0.6857, avg acc: 59.0476% 2023-06-28 03:14:02.248611 Train: epoch: 2 batch: 0/4, loss: 0.660941 2023-06-28 03:15:28.672696 Validation: avg loss: 0.6814, avg acc: 59.0476% 2023-06-28 03:15:55.889171 Train: epoch: 3 batch: 0/4, loss: 0.677196 2023-06-28 03:17:22.246065 Validation: avg loss: 0.6786, avg acc: 59.0476% 2023-06-28 03:17:49.559499 Train: epoch: 4 batch: 0/4, loss: 0.658742 2023-06-28 03:19:15.996798 Validation: avg loss: 0.6773, avg acc: 59.0476% 2023-06-28 03:19:43.304110 Train: epoch: 5 batch: 0/4, loss: 0.639081 2023-06-28 03:21:09.730463 Validation: avg loss: 0.6766, avg acc: 59.0476% 2023-06-28 03:21:36.976033 Train: epoch: 6 batch: 0/4, loss: 0.644215 2023-06-28 03:23:03.375505 Validation: avg loss: 0.6785, avg acc: 59.0476% 2023-06-28 03:23:30.700397 Train: epoch: 7 batch: 0/4, loss: 0.589882 2023-06-28 03:24:57.368440 Validation: avg loss: 0.6840, avg acc: 59.0476% 2023-06-28 03:25:24.609371 Train: epoch: 8 batch: 0/4, loss: 0.598612 2023-06-28 03:26:51.153481 Validation: avg loss: 0.6744, avg acc: 59.0476% 2023-06-28 03:27:18.453132 Train: epoch: 9 batch: 0/4, loss: 0.535064 2023-06-28 03:28:45.049005 Validation: avg loss: 0.6742, avg acc: 59.0476% 2023-06-28 03:29:12.429540 Train: epoch: 10 batch: 0/4, loss: 0.445725 2023-06-28 03:30:39.157958 Validation: avg loss: 0.6635, avg acc: 59.0476% 2023-06-28 03:31:06.510547 Train: epoch: 11 batch: 0/4, loss: 0.404390 2023-06-28 03:32:33.136095 Validation: avg loss: 0.6513, avg acc: 60.9524% 2023-06-28 03:33:00.548645 Train: epoch: 12 batch: 0/4, loss: 0.299564 2023-06-28 03:34:27.188458 Validation: avg loss: 0.6300, avg acc: 66.6667% 2023-06-28 03:34:54.497327 Train: epoch: 13 batch: 0/4, loss: 0.214730 2023-06-28 03:36:20.982842 Validation: avg loss: 0.5986, avg acc: 70.4762% 2023-06-28 03:36:48.279724 Train: epoch: 14 batch: 0/4, loss: 0.139650 2023-06-28 03:38:14.780257 Validation: avg loss: 0.5917, avg acc: 70.4762% 2023-06-28 03:38:42.185034 Train: epoch: 15 batch: 0/4, loss: 0.095805 2023-06-28 03:40:08.762359 Validation: avg loss: 0.6035, avg acc: 70.4762% 2023-06-28 03:40:36.014349 Train: epoch: 16 batch: 0/4, loss: 0.117713 2023-06-28 03:42:02.806398 Validation: avg loss: 0.6005, avg acc: 74.2857% 2023-06-28 03:42:30.083217 Train: epoch: 17 batch: 0/4, loss: 0.053618 2023-06-28 03:43:56.560993 Validation: avg loss: 0.6274, avg acc: 73.3333% 2023-06-28 03:44:23.921173 Train: epoch: 18 batch: 0/4, loss: 0.031614 2023-06-28 03:45:50.567906 Validation: avg loss: 0.6853, avg acc: 73.3333% 2023-06-28 03:46:17.900417 Train: epoch: 19 batch: 0/4, loss: 0.020584 2023-06-28 03:47:44.369591 Validation: avg loss: 0.7224, avg acc: 74.2857% 2023-06-28 03:48:11.683537 Train: epoch: 20 batch: 0/4, loss: 0.016825 2023-06-28 03:49:38.121020 Validation: avg loss: 0.7518, avg acc: 77.1429% 2023-06-28 03:50:05.533161 Train: epoch: 21 batch: 0/4, loss: 0.025432 2023-06-28 03:51:32.061008 Validation: avg loss: 0.7888, avg acc: 75.2381% 2023-06-28 03:51:59.383920 Train: epoch: 22 batch: 0/4, loss: 0.043029 2023-06-28 03:53:25.981256 Validation: avg loss: 0.8037, avg acc: 74.2857% 2023-06-28 03:53:53.353953 Train: epoch: 23 batch: 0/4, loss: 0.008785 2023-06-28 03:55:19.878661 Validation: avg loss: 0.8034, avg acc: 73.3333% 2023-06-28 03:55:47.181928 Train: epoch: 24 batch: 0/4, loss: 0.005627 2023-06-28 03:57:13.741347 Validation: avg loss: 0.8422, avg acc: 75.2381% 2023-06-28 03:57:41.055459 Train: epoch: 25 batch: 0/4, loss: 0.011560 2023-06-28 03:59:07.539045 Validation: avg loss: 0.8324, avg acc: 74.2857% 2023-06-28 03:59:34.906505 Train: epoch: 26 batch: 0/4, loss: 0.005340 2023-06-28 04:01:01.156838 Validation: avg loss: 0.8390, avg acc: 74.2857% 2023-06-28 04:01:28.310528 Train: epoch: 27 batch: 0/4, loss: 0.003994 2023-06-28 04:02:54.549754 Validation: avg loss: 0.8549, avg acc: 76.1905% 2023-06-28 04:03:21.745650 Train: epoch: 28 batch: 0/4, loss: 0.004037 2023-06-28 04:04:47.978870 Validation: avg loss: 0.9414, avg acc: 75.2381% 2023-06-28 04:05:15.077678 Train: epoch: 29 batch: 0/4, loss: 0.003525 2023-06-28 04:06:41.253870 Validation: avg loss: 0.7540, avg acc: 76.1905% 2023-06-28 04:07:08.447299 Train: epoch: 30 batch: 0/4, loss: 0.010938 2023-06-28 04:08:34.678209 Validation: avg loss: 0.7487, avg acc: 75.2381% 2023-06-28 04:09:01.850756 Train: epoch: 31 batch: 0/4, loss: 0.008799 2023-06-28 04:10:27.965042 Validation: avg loss: 0.7571, avg acc: 76.1905% 2023-06-28 04:10:55.161585 Train: epoch: 32 batch: 0/4, loss: 0.009438 2023-06-28 04:12:21.369456 Validation: avg loss: 0.8214, avg acc: 78.0952% 2023-06-28 04:12:48.557866 Train: epoch: 33 batch: 0/4, loss: 0.010469 2023-06-28 04:14:14.817327 Validation: avg loss: 0.7763, avg acc: 80.0000% 2023-06-28 04:14:42.017780 Train: epoch: 34 batch: 0/4, loss: 0.010956 2023-06-28 04:16:08.324725 Validation: avg loss: 0.7527, avg acc: 77.1429% 2023-06-28 04:16:35.565484 Train: epoch: 35 batch: 0/4, loss: 0.004107 2023-06-28 04:18:01.747081 Validation: avg loss: 0.7567, avg acc: 78.0952% 2023-06-28 04:18:29.006570 Train: epoch: 36 batch: 0/4, loss: 0.005303 2023-06-28 04:19:55.293630 Validation: avg loss: 0.7849, avg acc: 78.0952% 2023-06-28 04:20:22.566884 Train: epoch: 37 batch: 0/4, loss: 0.004355 2023-06-28 04:21:48.913328 Validation: avg loss: 0.8529, avg acc: 74.2857% 2023-06-28 04:22:16.123283 Train: epoch: 38 batch: 0/4, loss: 0.002653 2023-06-28 04:23:42.314617 Validation: avg loss: 0.9147, avg acc: 72.3810% 2023-06-28 04:24:09.540944 Train: epoch: 39 batch: 0/4, loss: 0.003798 2023-06-28 04:25:35.801392 Validation: avg loss: 0.9432, avg acc: 73.3333% 2023-06-28 04:26:03.093014 Train: epoch: 40 batch: 0/4, loss: 0.004928 2023-06-28 04:27:29.335487 Validation: avg loss: 0.9504, avg acc: 74.2857% 2023-06-28 04:27:56.595927 Train: epoch: 41 batch: 0/4, loss: 0.003297 2023-06-28 04:29:22.829464 Validation: avg loss: 0.9514, avg acc: 74.2857% 2023-06-28 04:29:50.060556 Train: epoch: 42 batch: 0/4, loss: 0.008558 2023-06-28 04:31:16.227639 Validation: avg loss: 0.9680, avg acc: 75.2381% 2023-06-28 04:31:43.403653 Train: epoch: 43 batch: 0/4, loss: 0.003308 2023-06-28 04:33:09.493717 Validation: avg loss: 0.9591, avg acc: 75.2381% 2023-06-28 04:33:36.739152 Train: epoch: 44 batch: 0/4, loss: 0.001741 2023-06-28 04:35:02.790738 Validation: avg loss: 0.9662, avg acc: 76.1905% 2023-06-28 04:35:30.000194 Train: epoch: 45 batch: 0/4, loss: 0.005446 2023-06-28 04:36:56.137687 Validation: avg loss: 0.9592, avg acc: 77.1429% 2023-06-28 04:37:23.365801 Train: epoch: 46 batch: 0/4, loss: 0.001942 2023-06-28 04:38:49.522040 Validation: avg loss: 0.9543, avg acc: 76.1905% 2023-06-28 04:39:16.764699 Train: epoch: 47 batch: 0/4, loss: 0.001761 2023-06-28 04:40:42.896181 Validation: avg loss: 0.9601, avg acc: 75.2381% 2023-06-28 04:41:10.053471 Train: epoch: 48 batch: 0/4, loss: 0.003969 2023-06-28 04:42:36.352263 Validation: avg loss: 0.9548, avg acc: 76.1905% 2023-06-28 04:43:03.630201 Train: epoch: 49 batch: 0/4, loss: 0.000910 2023-06-28 04:44:29.912814 Validation: avg loss: 0.9550, avg acc: 75.2381% 2023-06-28 04:44:57.209325 Train: epoch: 50 batch: 0/4, loss: 0.002676 2023-06-28 04:46:23.407038 Validation: avg loss: 0.9544, avg acc: 78.0952%