2023-06-27 16:09:42.034579 cuda 2023-06-27 16:10:09.076819 Train: epoch: 1 batch: 0/4, loss: 0.689472 2023-06-27 16:11:35.174440 Validation: avg loss: 0.6920, avg acc: 56.1905% 2023-06-27 16:12:02.321326 Train: epoch: 2 batch: 0/4, loss: 0.716974 2023-06-27 16:13:28.541905 Validation: avg loss: 0.6863, avg acc: 56.1905% 2023-06-27 16:13:55.708802 Train: epoch: 3 batch: 0/4, loss: 0.690668 2023-06-27 16:15:21.903504 Validation: avg loss: 0.6862, avg acc: 56.1905% 2023-06-27 16:15:49.073698 Train: epoch: 4 batch: 0/4, loss: 0.651886 2023-06-27 16:17:15.391097 Validation: avg loss: 0.6885, avg acc: 56.1905% 2023-06-27 16:17:42.588880 Train: epoch: 5 batch: 0/4, loss: 0.654914 2023-06-27 16:19:08.607998 Validation: avg loss: 0.6970, avg acc: 56.1905% 2023-06-27 16:19:35.835676 Train: epoch: 6 batch: 0/4, loss: 0.635806 2023-06-27 16:21:02.088965 Validation: avg loss: 0.7131, avg acc: 56.1905% 2023-06-27 16:21:29.316734 Train: epoch: 7 batch: 0/4, loss: 0.629673 2023-06-27 16:22:55.424383 Validation: avg loss: 0.7514, avg acc: 56.1905% 2023-06-27 16:23:22.544005 Train: epoch: 8 batch: 0/4, loss: 0.563512 2023-06-27 16:24:48.721804 Validation: avg loss: 0.7544, avg acc: 56.1905% 2023-06-27 16:25:15.907744 Train: epoch: 9 batch: 0/4, loss: 0.547313 2023-06-27 16:26:42.443779 Validation: avg loss: 0.7992, avg acc: 56.1905% 2023-06-27 16:27:09.783645 Train: epoch: 10 batch: 0/4, loss: 0.444450 2023-06-27 16:28:36.109380 Validation: avg loss: 0.8431, avg acc: 56.1905% 2023-06-27 16:29:03.340309 Train: epoch: 11 batch: 0/4, loss: 0.363815 2023-06-27 16:30:29.692076 Validation: avg loss: 0.9948, avg acc: 56.1905% 2023-06-27 16:30:56.891684 Train: epoch: 12 batch: 0/4, loss: 0.274682 2023-06-27 16:32:23.120135 Validation: avg loss: 0.9824, avg acc: 56.1905% 2023-06-27 16:32:50.288607 Train: epoch: 13 batch: 0/4, loss: 0.226884 2023-06-27 16:34:16.507697 Validation: avg loss: 1.0053, avg acc: 56.1905% 2023-06-27 16:34:43.726781 Train: epoch: 14 batch: 0/4, loss: 0.165106 2023-06-27 16:36:09.819922 Validation: avg loss: 0.9196, avg acc: 58.0952% 2023-06-27 16:36:37.091113 Train: epoch: 15 batch: 0/4, loss: 0.102541 2023-06-27 16:38:03.361117 Validation: avg loss: 0.9440, avg acc: 58.0952% 2023-06-27 16:38:30.537668 Train: epoch: 16 batch: 0/4, loss: 0.084653 2023-06-27 16:39:56.678072 Validation: avg loss: 0.9750, avg acc: 60.0000% 2023-06-27 16:40:23.933856 Train: epoch: 17 batch: 0/4, loss: 0.093461 2023-06-27 16:41:50.392128 Validation: avg loss: 0.9532, avg acc: 63.8095% 2023-06-27 16:42:17.568810 Train: epoch: 18 batch: 0/4, loss: 0.040381 2023-06-27 16:43:43.546950 Validation: avg loss: 0.9573, avg acc: 62.8571% 2023-06-27 16:44:10.708190 Train: epoch: 19 batch: 0/4, loss: 0.038573 2023-06-27 16:45:36.914874 Validation: avg loss: 0.9937, avg acc: 67.6190% 2023-06-27 16:46:04.137257 Train: epoch: 20 batch: 0/4, loss: 0.038389 2023-06-27 16:47:30.440530 Validation: avg loss: 1.0789, avg acc: 65.7143% 2023-06-27 16:47:57.631426 Train: epoch: 21 batch: 0/4, loss: 0.010777 2023-06-27 16:49:23.780402 Validation: avg loss: 1.1505, avg acc: 66.6667% 2023-06-27 16:49:51.060769 Train: epoch: 22 batch: 0/4, loss: 0.011703 2023-06-27 16:51:17.385118 Validation: avg loss: 1.2451, avg acc: 62.8571% 2023-06-27 16:51:44.631865 Train: epoch: 23 batch: 0/4, loss: 0.007243 2023-06-27 16:53:10.944555 Validation: avg loss: 1.3300, avg acc: 61.9048% 2023-06-27 16:53:38.203599 Train: epoch: 24 batch: 0/4, loss: 0.006529 2023-06-27 16:55:04.414313 Validation: avg loss: 1.3780, avg acc: 63.8095% 2023-06-27 16:55:31.700853 Train: epoch: 25 batch: 0/4, loss: 0.005980 2023-06-27 16:56:58.079196 Validation: avg loss: 1.3814, avg acc: 65.7143% 2023-06-27 16:57:25.220443 Train: epoch: 26 batch: 0/4, loss: 0.005226 2023-06-27 16:58:51.518167 Validation: avg loss: 1.4504, avg acc: 62.8571% 2023-06-27 16:59:18.711172 Train: epoch: 27 batch: 0/4, loss: 0.005868 2023-06-27 17:00:45.168958 Validation: avg loss: 1.5561, avg acc: 60.0000% 2023-06-27 17:01:12.415606 Train: epoch: 28 batch: 0/4, loss: 0.011277 2023-06-27 17:02:38.557493 Validation: avg loss: 1.5640, avg acc: 60.9524% 2023-06-27 17:03:05.696062 Train: epoch: 29 batch: 0/4, loss: 0.005151 2023-06-27 17:04:31.874819 Validation: avg loss: 1.5746, avg acc: 64.7619% 2023-06-27 17:04:59.035746 Train: epoch: 30 batch: 0/4, loss: 0.006748 2023-06-27 17:06:25.381774 Validation: avg loss: 1.5758, avg acc: 65.7143% 2023-06-27 17:06:52.735323 Train: epoch: 31 batch: 0/4, loss: 0.005076 2023-06-27 17:08:19.418008 Validation: avg loss: 1.5240, avg acc: 66.6667% 2023-06-27 17:08:46.733625 Train: epoch: 32 batch: 0/4, loss: 0.005442 2023-06-27 17:10:13.234751 Validation: avg loss: 1.4960, avg acc: 66.6667% 2023-06-27 17:10:40.528432 Train: epoch: 33 batch: 0/4, loss: 0.003327 2023-06-27 17:12:07.297788 Validation: avg loss: 1.5235, avg acc: 65.7143% 2023-06-27 17:12:34.617996 Train: epoch: 34 batch: 0/4, loss: 0.002123 2023-06-27 17:14:01.261567 Validation: avg loss: 1.5658, avg acc: 65.7143% 2023-06-27 17:14:28.510759 Train: epoch: 35 batch: 0/4, loss: 0.002863 2023-06-27 17:15:55.225065 Validation: avg loss: 1.6060, avg acc: 64.7619% 2023-06-27 17:16:22.480585 Train: epoch: 36 batch: 0/4, loss: 0.012008 2023-06-27 17:17:48.907176 Validation: avg loss: 1.6271, avg acc: 62.8571% 2023-06-27 17:18:16.266273 Train: epoch: 37 batch: 0/4, loss: 0.002597 2023-06-27 17:19:43.435027 Validation: avg loss: 1.6503, avg acc: 64.7619% 2023-06-27 17:20:10.827029 Train: epoch: 38 batch: 0/4, loss: 0.001793 2023-06-27 17:21:37.592658 Validation: avg loss: 1.6299, avg acc: 65.7143% 2023-06-27 17:22:04.882773 Train: epoch: 39 batch: 0/4, loss: 0.002763 2023-06-27 17:23:31.337687 Validation: avg loss: 1.6197, avg acc: 65.7143% 2023-06-27 17:23:58.617221 Train: epoch: 40 batch: 0/4, loss: 0.003522 2023-06-27 17:25:25.155248 Validation: avg loss: 1.6265, avg acc: 64.7619% 2023-06-27 17:25:52.382030 Train: epoch: 41 batch: 0/4, loss: 0.002152 2023-06-27 17:27:18.837014 Validation: avg loss: 1.6280, avg acc: 65.7143% 2023-06-27 17:27:46.040369 Train: epoch: 42 batch: 0/4, loss: 0.001350 2023-06-27 17:29:12.528662 Validation: avg loss: 1.6349, avg acc: 63.8095% 2023-06-27 17:29:39.697519 Train: epoch: 43 batch: 0/4, loss: 0.001068 2023-06-27 17:31:05.928921 Validation: avg loss: 1.6347, avg acc: 63.8095% 2023-06-27 17:31:33.115344 Train: epoch: 44 batch: 0/4, loss: 0.001226 2023-06-27 17:32:59.337595 Validation: avg loss: 1.6424, avg acc: 63.8095% 2023-06-27 17:33:26.538144 Train: epoch: 45 batch: 0/4, loss: 0.001703 2023-06-27 17:34:52.829378 Validation: avg loss: 1.6544, avg acc: 63.8095% 2023-06-27 17:35:20.005291 Train: epoch: 46 batch: 0/4, loss: 0.000946 2023-06-27 17:36:46.480670 Validation: avg loss: 1.6794, avg acc: 63.8095% 2023-06-27 17:37:13.757354 Train: epoch: 47 batch: 0/4, loss: 0.001093 2023-06-27 17:38:40.118579 Validation: avg loss: 1.6843, avg acc: 63.8095% 2023-06-27 17:39:07.209172 Train: epoch: 48 batch: 0/4, loss: 0.001040 2023-06-27 17:40:33.402375 Validation: avg loss: 1.6992, avg acc: 63.8095% 2023-06-27 17:41:00.565175 Train: epoch: 49 batch: 0/4, loss: 0.001660 2023-06-27 17:42:26.801610 Validation: avg loss: 1.6996, avg acc: 63.8095% 2023-06-27 17:42:53.930828 Train: epoch: 50 batch: 0/4, loss: 0.001118 2023-06-27 17:44:20.225669 Validation: avg loss: 1.7042, avg acc: 63.8095%