2023-06-27 14:34:58.219015 cuda 2023-06-27 14:35:25.429647 Train: epoch: 1 batch: 0/4, loss: 0.692641 2023-06-27 14:36:52.028023 Validation: avg loss: 0.6886, avg acc: 58.0952% 2023-06-27 14:37:19.371470 Train: epoch: 2 batch: 0/4, loss: 0.679666 2023-06-27 14:38:45.994577 Validation: avg loss: 0.6812, avg acc: 58.0952% 2023-06-27 14:39:13.268237 Train: epoch: 3 batch: 0/4, loss: 0.679477 2023-06-27 14:40:39.747142 Validation: avg loss: 0.6885, avg acc: 58.0952% 2023-06-27 14:41:07.096706 Train: epoch: 4 batch: 0/4, loss: 0.671980 2023-06-27 14:42:33.828256 Validation: avg loss: 0.6863, avg acc: 58.0952% 2023-06-27 14:43:01.088619 Train: epoch: 5 batch: 0/4, loss: 0.650531 2023-06-27 14:44:27.638675 Validation: avg loss: 0.6861, avg acc: 58.0952% 2023-06-27 14:44:54.990063 Train: epoch: 6 batch: 0/4, loss: 0.641892 2023-06-27 14:46:21.588466 Validation: avg loss: 0.6821, avg acc: 58.0952% 2023-06-27 14:46:48.886209 Train: epoch: 7 batch: 0/4, loss: 0.600969 2023-06-27 14:48:15.496536 Validation: avg loss: 0.7011, avg acc: 41.9048% 2023-06-27 14:48:42.770579 Train: epoch: 8 batch: 0/4, loss: 0.602727 2023-06-27 14:50:09.541234 Validation: avg loss: 0.7364, avg acc: 41.9048% 2023-06-27 14:50:36.771359 Train: epoch: 9 batch: 0/4, loss: 0.546539 2023-06-27 14:52:03.483383 Validation: avg loss: 0.7714, avg acc: 41.9048% 2023-06-27 14:52:30.907359 Train: epoch: 10 batch: 0/4, loss: 0.477320 2023-06-27 14:53:57.804455 Validation: avg loss: 0.8625, avg acc: 41.9048% 2023-06-27 14:54:25.187596 Train: epoch: 11 batch: 0/4, loss: 0.415886 2023-06-27 14:55:51.722946 Validation: avg loss: 0.8547, avg acc: 42.8571% 2023-06-27 14:56:19.059857 Train: epoch: 12 batch: 0/4, loss: 0.343199 2023-06-27 14:57:45.474514 Validation: avg loss: 0.9023, avg acc: 42.8571% 2023-06-27 14:58:12.630153 Train: epoch: 13 batch: 0/4, loss: 0.291277 2023-06-27 14:59:38.986668 Validation: avg loss: 1.0237, avg acc: 41.9048% 2023-06-27 15:00:06.121183 Train: epoch: 14 batch: 0/4, loss: 0.198794 2023-06-27 15:01:32.539287 Validation: avg loss: 0.9636, avg acc: 52.3810% 2023-06-27 15:01:59.739159 Train: epoch: 15 batch: 0/4, loss: 0.120545 2023-06-27 15:03:26.027892 Validation: avg loss: 0.8863, avg acc: 54.2857% 2023-06-27 15:03:53.279023 Train: epoch: 16 batch: 0/4, loss: 0.111169 2023-06-27 15:05:19.701211 Validation: avg loss: 0.9601, avg acc: 54.2857% 2023-06-27 15:05:46.913710 Train: epoch: 17 batch: 0/4, loss: 0.048385 2023-06-27 15:07:13.367950 Validation: avg loss: 0.9682, avg acc: 55.2381% 2023-06-27 15:07:40.522977 Train: epoch: 18 batch: 0/4, loss: 0.034194 2023-06-27 15:09:06.797498 Validation: avg loss: 0.9487, avg acc: 61.9048% 2023-06-27 15:09:33.996084 Train: epoch: 19 batch: 0/4, loss: 0.041916 2023-06-27 15:11:00.495380 Validation: avg loss: 0.9886, avg acc: 60.0000% 2023-06-27 15:11:27.700340 Train: epoch: 20 batch: 0/4, loss: 0.018873 2023-06-27 15:12:54.125217 Validation: avg loss: 1.0086, avg acc: 62.8571% 2023-06-27 15:13:21.393051 Train: epoch: 21 batch: 0/4, loss: 0.013758 2023-06-27 15:14:47.845321 Validation: avg loss: 1.0361, avg acc: 62.8571% 2023-06-27 15:15:15.068215 Train: epoch: 22 batch: 0/4, loss: 0.024895 2023-06-27 15:16:41.458406 Validation: avg loss: 1.0681, avg acc: 56.1905% 2023-06-27 15:17:08.797059 Train: epoch: 23 batch: 0/4, loss: 0.010909 2023-06-27 15:18:35.072484 Validation: avg loss: 1.1441, avg acc: 57.1429% 2023-06-27 15:19:02.312870 Train: epoch: 24 batch: 0/4, loss: 0.021563 2023-06-27 15:20:28.638937 Validation: avg loss: 1.1544, avg acc: 55.2381% 2023-06-27 15:20:55.877058 Train: epoch: 25 batch: 0/4, loss: 0.011905 2023-06-27 15:22:22.190719 Validation: avg loss: 1.1842, avg acc: 61.9048% 2023-06-27 15:22:49.392648 Train: epoch: 26 batch: 0/4, loss: 0.005870 2023-06-27 15:24:15.761457 Validation: avg loss: 1.2231, avg acc: 60.0000% 2023-06-27 15:24:43.009076 Train: epoch: 27 batch: 0/4, loss: 0.007372 2023-06-27 15:26:09.389701 Validation: avg loss: 1.1673, avg acc: 60.0000% 2023-06-27 15:26:36.607810 Train: epoch: 28 batch: 0/4, loss: 0.008340 2023-06-27 15:28:03.076340 Validation: avg loss: 1.1514, avg acc: 60.9524% 2023-06-27 15:28:30.257499 Train: epoch: 29 batch: 0/4, loss: 0.009561 2023-06-27 15:29:56.482834 Validation: avg loss: 1.1984, avg acc: 60.9524% 2023-06-27 15:30:23.675110 Train: epoch: 30 batch: 0/4, loss: 0.003211 2023-06-27 15:31:50.080039 Validation: avg loss: 1.2334, avg acc: 58.0952% 2023-06-27 15:32:17.220022 Train: epoch: 31 batch: 0/4, loss: 0.002422 2023-06-27 15:33:43.538192 Validation: avg loss: 1.3136, avg acc: 57.1429% 2023-06-27 15:34:10.747774 Train: epoch: 32 batch: 0/4, loss: 0.003088 2023-06-27 15:35:37.043014 Validation: avg loss: 1.3489, avg acc: 58.0952% 2023-06-27 15:36:04.215670 Train: epoch: 33 batch: 0/4, loss: 0.004744 2023-06-27 15:37:30.760332 Validation: avg loss: 1.3694, avg acc: 60.0000% 2023-06-27 15:37:57.990235 Train: epoch: 34 batch: 0/4, loss: 0.004681 2023-06-27 15:39:24.331682 Validation: avg loss: 1.3740, avg acc: 58.0952% 2023-06-27 15:39:51.540222 Train: epoch: 35 batch: 0/4, loss: 0.002820 2023-06-27 15:41:17.787803 Validation: avg loss: 1.3670, avg acc: 60.0000% 2023-06-27 15:41:44.972450 Train: epoch: 36 batch: 0/4, loss: 0.002842 2023-06-27 15:43:11.465767 Validation: avg loss: 1.3616, avg acc: 60.0000% 2023-06-27 15:43:38.697617 Train: epoch: 37 batch: 0/4, loss: 0.002162 2023-06-27 15:45:05.077605 Validation: avg loss: 1.3509, avg acc: 60.9524% 2023-06-27 15:45:32.325796 Train: epoch: 38 batch: 0/4, loss: 0.003326 2023-06-27 15:46:58.706066 Validation: avg loss: 1.3512, avg acc: 60.9524% 2023-06-27 15:47:25.910792 Train: epoch: 39 batch: 0/4, loss: 0.001938 2023-06-27 15:48:52.278203 Validation: avg loss: 1.3603, avg acc: 59.0476% 2023-06-27 15:49:19.535554 Train: epoch: 40 batch: 0/4, loss: 0.003635 2023-06-27 15:50:45.837145 Validation: avg loss: 1.3606, avg acc: 59.0476% 2023-06-27 15:51:12.981343 Train: epoch: 41 batch: 0/4, loss: 0.005210 2023-06-27 15:52:39.442147 Validation: avg loss: 1.3714, avg acc: 60.9524% 2023-06-27 15:53:06.657741 Train: epoch: 42 batch: 0/4, loss: 0.002000 2023-06-27 15:54:32.994759 Validation: avg loss: 1.3837, avg acc: 60.9524% 2023-06-27 15:55:00.231831 Train: epoch: 43 batch: 0/4, loss: 0.002722 2023-06-27 15:56:26.472286 Validation: avg loss: 1.3989, avg acc: 60.9524% 2023-06-27 15:56:53.745332 Train: epoch: 44 batch: 0/4, loss: 0.001284 2023-06-27 15:58:20.247427 Validation: avg loss: 1.4101, avg acc: 60.9524% 2023-06-27 15:58:47.411493 Train: epoch: 45 batch: 0/4, loss: 0.001307 2023-06-27 16:00:13.673967 Validation: avg loss: 1.4165, avg acc: 62.8571% 2023-06-27 16:00:40.902848 Train: epoch: 46 batch: 0/4, loss: 0.001449 2023-06-27 16:02:07.334373 Validation: avg loss: 1.4139, avg acc: 62.8571% 2023-06-27 16:02:34.513168 Train: epoch: 47 batch: 0/4, loss: 0.000836 2023-06-27 16:04:00.916745 Validation: avg loss: 1.4183, avg acc: 62.8571% 2023-06-27 16:04:28.157483 Train: epoch: 48 batch: 0/4, loss: 0.000725 2023-06-27 16:05:54.661361 Validation: avg loss: 1.4129, avg acc: 62.8571% 2023-06-27 16:06:21.930959 Train: epoch: 49 batch: 0/4, loss: 0.001346 2023-06-27 16:07:48.387457 Validation: avg loss: 1.4078, avg acc: 62.8571% 2023-06-27 16:08:15.553523 Train: epoch: 50 batch: 0/4, loss: 0.001285 2023-06-27 16:09:42.001568 Validation: avg loss: 1.4038, avg acc: 62.8571%