2023-06-27 13:00:26.176732 cuda 2023-06-27 13:00:53.363334 Train: epoch: 1 batch: 0/4, loss: 0.691868 2023-06-27 13:02:19.586241 Validation: avg loss: 0.6879, avg acc: 57.1429% 2023-06-27 13:02:46.901065 Train: epoch: 2 batch: 0/4, loss: 0.667772 2023-06-27 13:04:13.269972 Validation: avg loss: 0.6835, avg acc: 57.1429% 2023-06-27 13:04:40.613288 Train: epoch: 3 batch: 0/4, loss: 0.684359 2023-06-27 13:06:06.965697 Validation: avg loss: 0.6853, avg acc: 57.1429% 2023-06-27 13:06:34.320390 Train: epoch: 4 batch: 0/4, loss: 0.664518 2023-06-27 13:08:00.635158 Validation: avg loss: 0.6830, avg acc: 57.1429% 2023-06-27 13:08:27.965382 Train: epoch: 5 batch: 0/4, loss: 0.648012 2023-06-27 13:09:54.395378 Validation: avg loss: 0.6834, avg acc: 57.1429% 2023-06-27 13:10:21.695506 Train: epoch: 6 batch: 0/4, loss: 0.622020 2023-06-27 13:11:47.946932 Validation: avg loss: 0.6859, avg acc: 57.1429% 2023-06-27 13:12:15.181922 Train: epoch: 7 batch: 0/4, loss: 0.609585 2023-06-27 13:13:41.561458 Validation: avg loss: 0.6824, avg acc: 57.1429% 2023-06-27 13:14:08.777052 Train: epoch: 8 batch: 0/4, loss: 0.554784 2023-06-27 13:15:35.155008 Validation: avg loss: 0.6889, avg acc: 48.5714% 2023-06-27 13:16:02.400262 Train: epoch: 9 batch: 0/4, loss: 0.496770 2023-06-27 13:17:28.802709 Validation: avg loss: 0.6760, avg acc: 65.7143% 2023-06-27 13:17:56.148338 Train: epoch: 10 batch: 0/4, loss: 0.441182 2023-06-27 13:19:22.260881 Validation: avg loss: 0.6602, avg acc: 67.6190% 2023-06-27 13:19:49.537218 Train: epoch: 11 batch: 0/4, loss: 0.355155 2023-06-27 13:21:15.720325 Validation: avg loss: 0.6404, avg acc: 64.7619% 2023-06-27 13:21:42.980084 Train: epoch: 12 batch: 0/4, loss: 0.252484 2023-06-27 13:23:09.091058 Validation: avg loss: 0.5940, avg acc: 71.4286% 2023-06-27 13:23:36.276716 Train: epoch: 13 batch: 0/4, loss: 0.208692 2023-06-27 13:25:02.313005 Validation: avg loss: 0.5678, avg acc: 73.3333% 2023-06-27 13:25:29.525993 Train: epoch: 14 batch: 0/4, loss: 0.123566 2023-06-27 13:26:55.587109 Validation: avg loss: 0.5313, avg acc: 71.4286% 2023-06-27 13:27:22.752260 Train: epoch: 15 batch: 0/4, loss: 0.094163 2023-06-27 13:28:48.798156 Validation: avg loss: 0.5629, avg acc: 73.3333% 2023-06-27 13:29:15.918495 Train: epoch: 16 batch: 0/4, loss: 0.128869 2023-06-27 13:30:42.177941 Validation: avg loss: 0.4869, avg acc: 74.2857% 2023-06-27 13:31:09.371665 Train: epoch: 17 batch: 0/4, loss: 0.052145 2023-06-27 13:32:35.288189 Validation: avg loss: 0.4811, avg acc: 77.1429% 2023-06-27 13:33:02.526205 Train: epoch: 18 batch: 0/4, loss: 0.081217 2023-06-27 13:34:28.685232 Validation: avg loss: 0.5027, avg acc: 79.0476% 2023-06-27 13:34:55.827462 Train: epoch: 19 batch: 0/4, loss: 0.037434 2023-06-27 13:36:21.995335 Validation: avg loss: 0.5522, avg acc: 75.2381% 2023-06-27 13:36:49.182171 Train: epoch: 20 batch: 0/4, loss: 0.018138 2023-06-27 13:38:15.321220 Validation: avg loss: 0.5970, avg acc: 73.3333% 2023-06-27 13:38:42.563163 Train: epoch: 21 batch: 0/4, loss: 0.046510 2023-06-27 13:40:08.856619 Validation: avg loss: 0.6442, avg acc: 76.1905% 2023-06-27 13:40:36.011785 Train: epoch: 22 batch: 0/4, loss: 0.012692 2023-06-27 13:42:02.041543 Validation: avg loss: 0.6929, avg acc: 76.1905% 2023-06-27 13:42:29.300622 Train: epoch: 23 batch: 0/4, loss: 0.012382 2023-06-27 13:43:55.469573 Validation: avg loss: 0.7413, avg acc: 71.4286% 2023-06-27 13:44:22.657185 Train: epoch: 24 batch: 0/4, loss: 0.011344 2023-06-27 13:45:48.869449 Validation: avg loss: 0.7875, avg acc: 73.3333% 2023-06-27 13:46:16.075639 Train: epoch: 25 batch: 0/4, loss: 0.022635 2023-06-27 13:47:42.235744 Validation: avg loss: 0.7924, avg acc: 73.3333% 2023-06-27 13:48:09.432941 Train: epoch: 26 batch: 0/4, loss: 0.009560 2023-06-27 13:49:35.588933 Validation: avg loss: 0.7965, avg acc: 74.2857% 2023-06-27 13:50:02.731198 Train: epoch: 27 batch: 0/4, loss: 0.006484 2023-06-27 13:51:28.970791 Validation: avg loss: 0.8587, avg acc: 74.2857% 2023-06-27 13:51:56.247704 Train: epoch: 28 batch: 0/4, loss: 0.004506 2023-06-27 13:53:22.570553 Validation: avg loss: 0.9319, avg acc: 73.3333% 2023-06-27 13:53:49.732500 Train: epoch: 29 batch: 0/4, loss: 0.004227 2023-06-27 13:55:15.890086 Validation: avg loss: 0.8644, avg acc: 74.2857% 2023-06-27 13:55:43.166997 Train: epoch: 30 batch: 0/4, loss: 0.004787 2023-06-27 13:57:09.235315 Validation: avg loss: 0.8508, avg acc: 72.3810% 2023-06-27 13:57:36.386078 Train: epoch: 31 batch: 0/4, loss: 0.002624 2023-06-27 13:59:02.482710 Validation: avg loss: 0.8385, avg acc: 75.2381% 2023-06-27 13:59:29.719151 Train: epoch: 32 batch: 0/4, loss: 0.003996 2023-06-27 14:00:55.748644 Validation: avg loss: 0.8409, avg acc: 74.2857% 2023-06-27 14:01:22.921139 Train: epoch: 33 batch: 0/4, loss: 0.005487 2023-06-27 14:02:48.968525 Validation: avg loss: 0.8594, avg acc: 74.2857% 2023-06-27 14:03:16.144621 Train: epoch: 34 batch: 0/4, loss: 0.003296 2023-06-27 14:04:42.352338 Validation: avg loss: 0.8764, avg acc: 73.3333% 2023-06-27 14:05:09.507317 Train: epoch: 35 batch: 0/4, loss: 0.005862 2023-06-27 14:06:35.551024 Validation: avg loss: 0.8320, avg acc: 73.3333% 2023-06-27 14:07:02.704332 Train: epoch: 36 batch: 0/4, loss: 0.002351 2023-06-27 14:08:28.965811 Validation: avg loss: 0.8140, avg acc: 73.3333% 2023-06-27 14:08:56.202001 Train: epoch: 37 batch: 0/4, loss: 0.002389 2023-06-27 14:10:22.374434 Validation: avg loss: 0.8012, avg acc: 71.4286% 2023-06-27 14:10:49.581906 Train: epoch: 38 batch: 0/4, loss: 0.002360 2023-06-27 14:12:15.699183 Validation: avg loss: 0.7955, avg acc: 73.3333% 2023-06-27 14:12:42.882802 Train: epoch: 39 batch: 0/4, loss: 0.005763 2023-06-27 14:14:08.871220 Validation: avg loss: 0.7908, avg acc: 72.3810% 2023-06-27 14:14:36.148245 Train: epoch: 40 batch: 0/4, loss: 0.002953 2023-06-27 14:16:02.167597 Validation: avg loss: 0.8192, avg acc: 72.3810% 2023-06-27 14:16:29.353076 Train: epoch: 41 batch: 0/4, loss: 0.001854 2023-06-27 14:17:55.580920 Validation: avg loss: 0.8337, avg acc: 72.3810% 2023-06-27 14:18:22.841567 Train: epoch: 42 batch: 0/4, loss: 0.000968 2023-06-27 14:19:49.351311 Validation: avg loss: 0.8357, avg acc: 73.3333% 2023-06-27 14:20:16.702014 Train: epoch: 43 batch: 0/4, loss: 0.001232 2023-06-27 14:21:42.954946 Validation: avg loss: 0.8496, avg acc: 73.3333% 2023-06-27 14:22:10.272910 Train: epoch: 44 batch: 0/4, loss: 0.001958 2023-06-27 14:23:36.654827 Validation: avg loss: 0.8383, avg acc: 72.3810% 2023-06-27 14:24:03.851239 Train: epoch: 45 batch: 0/4, loss: 0.001643 2023-06-27 14:25:30.184931 Validation: avg loss: 0.8326, avg acc: 71.4286% 2023-06-27 14:25:57.497775 Train: epoch: 46 batch: 0/4, loss: 0.002304 2023-06-27 14:27:23.878822 Validation: avg loss: 0.8342, avg acc: 71.4286% 2023-06-27 14:27:51.095171 Train: epoch: 47 batch: 0/4, loss: 0.001024 2023-06-27 14:29:17.481154 Validation: avg loss: 0.8329, avg acc: 71.4286% 2023-06-27 14:29:44.770846 Train: epoch: 48 batch: 0/4, loss: 0.001529 2023-06-27 14:31:11.200693 Validation: avg loss: 0.8283, avg acc: 70.4762% 2023-06-27 14:31:38.445203 Train: epoch: 49 batch: 0/4, loss: 0.000885 2023-06-27 14:33:04.914596 Validation: avg loss: 0.8007, avg acc: 73.3333% 2023-06-27 14:33:32.124726 Train: epoch: 50 batch: 0/4, loss: 0.000966 2023-06-27 14:34:58.186159 Validation: avg loss: 0.7996, avg acc: 72.3810%