2023-06-27 01:59:32.283091 cuda 2023-06-27 02:00:19.220679 Train: epoch: 1 batch: 0/4, loss: 0.692692 2023-06-27 02:01:45.056517 Validation: avg loss: 0.6880, avg acc: 56.1905% 2023-06-27 02:02:12.228852 Train: epoch: 2 batch: 0/4, loss: 0.658743 2023-06-27 02:03:38.560296 Validation: avg loss: 0.6877, avg acc: 56.1905% 2023-06-27 02:04:05.720454 Train: epoch: 3 batch: 0/4, loss: 0.657871 2023-06-27 02:05:32.169351 Validation: avg loss: 0.6854, avg acc: 56.1905% 2023-06-27 02:05:59.317089 Train: epoch: 4 batch: 0/4, loss: 0.666273 2023-06-27 02:07:25.685815 Validation: avg loss: 0.6877, avg acc: 56.1905% 2023-06-27 02:07:52.791185 Train: epoch: 5 batch: 0/4, loss: 0.645225 2023-06-27 02:09:19.154753 Validation: avg loss: 0.6858, avg acc: 56.1905% 2023-06-27 02:09:46.424731 Train: epoch: 6 batch: 0/4, loss: 0.623888 2023-06-27 02:11:12.928777 Validation: avg loss: 0.6847, avg acc: 56.1905% 2023-06-27 02:11:40.214777 Train: epoch: 7 batch: 0/4, loss: 0.580446 2023-06-27 02:13:06.533535 Validation: avg loss: 0.6864, avg acc: 56.1905% 2023-06-27 02:13:33.676289 Train: epoch: 8 batch: 0/4, loss: 0.567984 2023-06-27 02:15:00.074375 Validation: avg loss: 0.6962, avg acc: 43.8095% 2023-06-27 02:15:27.339969 Train: epoch: 9 batch: 0/4, loss: 0.498715 2023-06-27 02:16:53.824842 Validation: avg loss: 0.7143, avg acc: 43.8095% 2023-06-27 02:17:20.991042 Train: epoch: 10 batch: 0/4, loss: 0.412389 2023-06-27 02:18:47.339751 Validation: avg loss: 0.6938, avg acc: 52.3810% 2023-06-27 02:19:14.535807 Train: epoch: 11 batch: 0/4, loss: 0.431757 2023-06-27 02:20:41.104110 Validation: avg loss: 0.6764, avg acc: 59.0476% 2023-06-27 02:21:08.353358 Train: epoch: 12 batch: 0/4, loss: 0.341980 2023-06-27 02:22:34.747154 Validation: avg loss: 0.6907, avg acc: 55.2381% 2023-06-27 02:23:01.951064 Train: epoch: 13 batch: 0/4, loss: 0.191258 2023-06-27 02:24:28.526972 Validation: avg loss: 0.7229, avg acc: 52.3810% 2023-06-27 02:24:55.693149 Train: epoch: 14 batch: 0/4, loss: 0.197494 2023-06-27 02:26:22.101262 Validation: avg loss: 0.7343, avg acc: 61.9048% 2023-06-27 02:26:49.365855 Train: epoch: 15 batch: 0/4, loss: 0.131904 2023-06-27 02:28:15.880422 Validation: avg loss: 0.8183, avg acc: 60.9524% 2023-06-27 02:28:43.054247 Train: epoch: 16 batch: 0/4, loss: 0.054692 2023-06-27 02:30:09.060479 Validation: avg loss: 0.9153, avg acc: 60.0000% 2023-06-27 02:30:36.137310 Train: epoch: 17 batch: 0/4, loss: 0.050563 2023-06-27 02:32:02.117634 Validation: avg loss: 0.9844, avg acc: 60.9524% 2023-06-27 02:32:29.169731 Train: epoch: 18 batch: 0/4, loss: 0.053166 2023-06-27 02:33:55.137135 Validation: avg loss: 1.0830, avg acc: 60.9524% 2023-06-27 02:34:22.166846 Train: epoch: 19 batch: 0/4, loss: 0.032123 2023-06-27 02:35:48.367994 Validation: avg loss: 1.2188, avg acc: 59.0476% 2023-06-27 02:36:15.464687 Train: epoch: 20 batch: 0/4, loss: 0.011078 2023-06-27 02:37:41.546528 Validation: avg loss: 1.3116, avg acc: 58.0952% 2023-06-27 02:38:08.613742 Train: epoch: 21 batch: 0/4, loss: 0.009437 2023-06-27 02:39:34.745311 Validation: avg loss: 1.3991, avg acc: 60.0000% 2023-06-27 02:40:01.727573 Train: epoch: 22 batch: 0/4, loss: 0.008098 2023-06-27 02:41:27.959071 Validation: avg loss: 1.4563, avg acc: 60.9524% 2023-06-27 02:41:54.947086 Train: epoch: 23 batch: 0/4, loss: 0.005597 2023-06-27 02:43:20.979804 Validation: avg loss: 1.5111, avg acc: 58.0952% 2023-06-27 02:43:48.082680 Train: epoch: 24 batch: 0/4, loss: 0.007035 2023-06-27 02:45:13.880253 Validation: avg loss: 1.5491, avg acc: 58.0952% 2023-06-27 02:45:40.821902 Train: epoch: 25 batch: 0/4, loss: 0.014974 2023-06-27 02:47:06.215747 Validation: avg loss: 1.6083, avg acc: 59.0476% 2023-06-27 02:47:33.049431 Train: epoch: 26 batch: 0/4, loss: 0.009223 2023-06-27 02:48:58.230909 Validation: avg loss: 1.6236, avg acc: 58.0952% 2023-06-27 02:49:25.116434 Train: epoch: 27 batch: 0/4, loss: 0.004450 2023-06-27 02:50:50.249101 Validation: avg loss: 1.6272, avg acc: 60.9524% 2023-06-27 02:51:17.185289 Train: epoch: 28 batch: 0/4, loss: 0.004213 2023-06-27 02:52:42.417771 Validation: avg loss: 1.6348, avg acc: 60.0000% 2023-06-27 02:53:09.392169 Train: epoch: 29 batch: 0/4, loss: 0.007142 2023-06-27 02:54:34.479362 Validation: avg loss: 1.6620, avg acc: 60.0000% 2023-06-27 02:55:01.579140 Train: epoch: 30 batch: 0/4, loss: 0.002469 2023-06-27 02:56:26.774915 Validation: avg loss: 1.6754, avg acc: 58.0952% 2023-06-27 02:56:53.730580 Train: epoch: 31 batch: 0/4, loss: 0.001998 2023-06-27 02:58:18.914844 Validation: avg loss: 1.6636, avg acc: 58.0952% 2023-06-27 02:58:45.838359 Train: epoch: 32 batch: 0/4, loss: 0.004437 2023-06-27 03:00:11.088444 Validation: avg loss: 1.6740, avg acc: 56.1905% 2023-06-27 03:00:38.057626 Train: epoch: 33 batch: 0/4, loss: 0.003358 2023-06-27 03:02:03.267012 Validation: avg loss: 1.6721, avg acc: 58.0952% 2023-06-27 03:02:30.192813 Train: epoch: 34 batch: 0/4, loss: 0.007877 2023-06-27 03:03:55.370666 Validation: avg loss: 1.7256, avg acc: 57.1429% 2023-06-27 03:04:22.330398 Train: epoch: 35 batch: 0/4, loss: 0.002116 2023-06-27 03:05:47.533817 Validation: avg loss: 1.7264, avg acc: 57.1429% 2023-06-27 03:06:14.522816 Train: epoch: 36 batch: 0/4, loss: 0.002035 2023-06-27 03:07:39.757508 Validation: avg loss: 1.7241, avg acc: 58.0952% 2023-06-27 03:08:06.838154 Train: epoch: 37 batch: 0/4, loss: 0.002826 2023-06-27 03:09:31.977029 Validation: avg loss: 1.7297, avg acc: 57.1429% 2023-06-27 03:09:59.061422 Train: epoch: 38 batch: 0/4, loss: 0.003084 2023-06-27 03:11:24.248853 Validation: avg loss: 1.7399, avg acc: 56.1905% 2023-06-27 03:11:51.165653 Train: epoch: 39 batch: 0/4, loss: 0.001958 2023-06-27 03:13:16.253117 Validation: avg loss: 1.7405, avg acc: 57.1429% 2023-06-27 03:13:43.233199 Train: epoch: 40 batch: 0/4, loss: 0.001262 2023-06-27 03:15:08.475732 Validation: avg loss: 1.7326, avg acc: 56.1905% 2023-06-27 03:15:35.474762 Train: epoch: 41 batch: 0/4, loss: 0.001404 2023-06-27 03:17:00.632572 Validation: avg loss: 1.7311, avg acc: 56.1905% 2023-06-27 03:17:27.635665 Train: epoch: 42 batch: 0/4, loss: 0.001106 2023-06-27 03:18:52.923263 Validation: avg loss: 1.7361, avg acc: 56.1905% 2023-06-27 03:19:19.869122 Train: epoch: 43 batch: 0/4, loss: 0.001162 2023-06-27 03:20:44.935747 Validation: avg loss: 1.7377, avg acc: 56.1905% 2023-06-27 03:21:11.870147 Train: epoch: 44 batch: 0/4, loss: 0.001035 2023-06-27 03:22:36.973028 Validation: avg loss: 1.7479, avg acc: 56.1905% 2023-06-27 03:23:03.876731 Train: epoch: 45 batch: 0/4, loss: 0.000927 2023-06-27 03:24:28.880784 Validation: avg loss: 1.7523, avg acc: 57.1429% 2023-06-27 03:24:55.838651 Train: epoch: 46 batch: 0/4, loss: 0.001295 2023-06-27 03:26:20.951645 Validation: avg loss: 1.7522, avg acc: 57.1429% 2023-06-27 03:26:47.910058 Train: epoch: 47 batch: 0/4, loss: 0.000797 2023-06-27 03:28:13.000012 Validation: avg loss: 1.7620, avg acc: 58.0952% 2023-06-27 03:28:40.022628 Train: epoch: 48 batch: 0/4, loss: 0.000734 2023-06-27 03:30:05.314235 Validation: avg loss: 1.7688, avg acc: 57.1429% 2023-06-27 03:30:32.364647 Train: epoch: 49 batch: 0/4, loss: 0.000535 2023-06-27 03:31:57.393118 Validation: avg loss: 1.7718, avg acc: 57.1429% 2023-06-27 03:32:24.461149 Train: epoch: 50 batch: 0/4, loss: 0.000676 2023-06-27 03:33:49.586317 Validation: avg loss: 1.7748, avg acc: 56.1905%