2023-06-28 03:59:12.580120 cuda 2023-06-28 03:59:26.750708 Train: epoch: 1 batch: 0/4, loss: 0.694612 2023-06-28 04:00:11.426282 Validation: avg loss: 0.6861, avg acc: 59.0476% 2023-06-28 04:00:25.908546 Train: epoch: 2 batch: 0/4, loss: 0.706914 2023-06-28 04:01:11.184999 Validation: avg loss: 0.6830, avg acc: 59.0476% 2023-06-28 04:01:25.798044 Train: epoch: 3 batch: 0/4, loss: 0.680926 2023-06-28 04:02:12.099444 Validation: avg loss: 0.6799, avg acc: 59.0476% 2023-06-28 04:02:26.460111 Train: epoch: 4 batch: 0/4, loss: 0.667983 2023-06-28 04:03:10.998068 Validation: avg loss: 0.6784, avg acc: 59.0476% 2023-06-28 04:03:25.196184 Train: epoch: 5 batch: 0/4, loss: 0.658656 2023-06-28 04:04:09.841678 Validation: avg loss: 0.6800, avg acc: 59.0476% 2023-06-28 04:04:24.079110 Train: epoch: 6 batch: 0/4, loss: 0.663088 2023-06-28 04:05:08.763914 Validation: avg loss: 0.6773, avg acc: 59.0476% 2023-06-28 04:05:23.003873 Train: epoch: 7 batch: 0/4, loss: 0.629996 2023-06-28 04:06:08.637310 Validation: avg loss: 0.6743, avg acc: 59.0476% 2023-06-28 04:06:23.407611 Train: epoch: 8 batch: 0/4, loss: 0.597220 2023-06-28 04:07:08.242516 Validation: avg loss: 0.6800, avg acc: 59.0476% 2023-06-28 04:07:22.526979 Train: epoch: 9 batch: 0/4, loss: 0.537858 2023-06-28 04:08:07.101244 Validation: avg loss: 0.6709, avg acc: 59.0476% 2023-06-28 04:08:21.328130 Train: epoch: 10 batch: 0/4, loss: 0.478460 2023-06-28 04:09:05.828543 Validation: avg loss: 0.6716, avg acc: 63.8095% 2023-06-28 04:09:19.873732 Train: epoch: 11 batch: 0/4, loss: 0.395090 2023-06-28 04:10:05.058702 Validation: avg loss: 0.6379, avg acc: 65.7143% 2023-06-28 04:10:19.285747 Train: epoch: 12 batch: 0/4, loss: 0.331272 2023-06-28 04:11:03.953933 Validation: avg loss: 0.6334, avg acc: 61.9048% 2023-06-28 04:11:18.090531 Train: epoch: 13 batch: 0/4, loss: 0.270222 2023-06-28 04:12:02.755340 Validation: avg loss: 0.5858, avg acc: 70.4762% 2023-06-28 04:12:16.950131 Train: epoch: 14 batch: 0/4, loss: 0.168852 2023-06-28 04:13:01.884081 Validation: avg loss: 0.5932, avg acc: 64.7619% 2023-06-28 04:13:16.075769 Train: epoch: 15 batch: 0/4, loss: 0.140117 2023-06-28 04:14:01.014580 Validation: avg loss: 0.6184, avg acc: 67.6190% 2023-06-28 04:14:15.406445 Train: epoch: 16 batch: 0/4, loss: 0.100922 2023-06-28 04:15:00.611265 Validation: avg loss: 0.6841, avg acc: 62.8571% 2023-06-28 04:15:14.772177 Train: epoch: 17 batch: 0/4, loss: 0.064960 2023-06-28 04:15:59.270308 Validation: avg loss: 0.8381, avg acc: 60.0000% 2023-06-28 04:16:13.358347 Train: epoch: 18 batch: 0/4, loss: 0.041114 2023-06-28 04:16:58.412814 Validation: avg loss: 0.8127, avg acc: 63.8095% 2023-06-28 04:17:12.859787 Train: epoch: 19 batch: 0/4, loss: 0.028654 2023-06-28 04:17:58.746568 Validation: avg loss: 0.8722, avg acc: 63.8095% 2023-06-28 04:18:13.193857 Train: epoch: 20 batch: 0/4, loss: 0.020548 2023-06-28 04:18:58.557002 Validation: avg loss: 1.0138, avg acc: 63.8095% 2023-06-28 04:19:12.811166 Train: epoch: 21 batch: 0/4, loss: 0.024834 2023-06-28 04:19:57.383134 Validation: avg loss: 1.1134, avg acc: 65.7143% 2023-06-28 04:20:11.593541 Train: epoch: 22 batch: 0/4, loss: 0.024447 2023-06-28 04:20:56.144567 Validation: avg loss: 1.1052, avg acc: 61.9048% 2023-06-28 04:21:10.280428 Train: epoch: 23 batch: 0/4, loss: 0.024402 2023-06-28 04:21:55.164144 Validation: avg loss: 1.0037, avg acc: 62.8571% 2023-06-28 04:22:09.484836 Train: epoch: 24 batch: 0/4, loss: 0.026940 2023-06-28 04:22:54.337155 Validation: avg loss: 1.1395, avg acc: 65.7143% 2023-06-28 04:23:08.575422 Train: epoch: 25 batch: 0/4, loss: 0.020789 2023-06-28 04:23:53.433541 Validation: avg loss: 1.1802, avg acc: 65.7143% 2023-06-28 04:24:07.944800 Train: epoch: 26 batch: 0/4, loss: 0.017444 2023-06-28 04:24:53.299679 Validation: avg loss: 1.0212, avg acc: 67.6190% 2023-06-28 04:25:07.765353 Train: epoch: 27 batch: 0/4, loss: 0.013250 2023-06-28 04:25:52.812562 Validation: avg loss: 0.9592, avg acc: 68.5714% 2023-06-28 04:26:07.260835 Train: epoch: 28 batch: 0/4, loss: 0.011131 2023-06-28 04:26:52.346310 Validation: avg loss: 1.1193, avg acc: 72.3810% 2023-06-28 04:27:06.644760 Train: epoch: 29 batch: 0/4, loss: 0.026329 2023-06-28 04:27:51.863781 Validation: avg loss: 1.1687, avg acc: 64.7619% 2023-06-28 04:28:05.962933 Train: epoch: 30 batch: 0/4, loss: 0.011010 2023-06-28 04:28:50.606240 Validation: avg loss: 1.1444, avg acc: 63.8095% 2023-06-28 04:29:04.812994 Train: epoch: 31 batch: 0/4, loss: 0.007555 2023-06-28 04:29:49.894941 Validation: avg loss: 1.2691, avg acc: 69.5238% 2023-06-28 04:30:04.020104 Train: epoch: 32 batch: 0/4, loss: 0.026084 2023-06-28 04:30:48.602736 Validation: avg loss: 1.3224, avg acc: 65.7143% 2023-06-28 04:31:02.668182 Train: epoch: 33 batch: 0/4, loss: 0.016953 2023-06-28 04:31:47.391245 Validation: avg loss: 1.3359, avg acc: 63.8095% 2023-06-28 04:32:01.694358 Train: epoch: 34 batch: 0/4, loss: 0.007214 2023-06-28 04:32:46.917156 Validation: avg loss: 1.2960, avg acc: 64.7619% 2023-06-28 04:33:01.216805 Train: epoch: 35 batch: 0/4, loss: 0.016135 2023-06-28 04:33:52.554001 Validation: avg loss: 1.3414, avg acc: 66.6667% 2023-06-28 04:34:09.581260 Train: epoch: 36 batch: 0/4, loss: 0.005827 2023-06-28 04:35:03.567810 Validation: avg loss: 1.4429, avg acc: 63.8095% 2023-06-28 04:35:20.656888 Train: epoch: 37 batch: 0/4, loss: 0.003277 2023-06-28 04:36:14.468588 Validation: avg loss: 1.5331, avg acc: 63.8095% 2023-06-28 04:36:31.559136 Train: epoch: 38 batch: 0/4, loss: 0.006702 2023-06-28 04:37:25.303902 Validation: avg loss: 1.5363, avg acc: 64.7619% 2023-06-28 04:37:42.401555 Train: epoch: 39 batch: 0/4, loss: 0.006998 2023-06-28 04:38:35.539481 Validation: avg loss: 1.5584, avg acc: 65.7143% 2023-06-28 04:38:52.511838 Train: epoch: 40 batch: 0/4, loss: 0.004243 2023-06-28 04:39:40.018935 Validation: avg loss: 1.5435, avg acc: 64.7619% 2023-06-28 04:39:54.218691 Train: epoch: 41 batch: 0/4, loss: 0.005694 2023-06-28 04:40:39.406743 Validation: avg loss: 1.5224, avg acc: 65.7143% 2023-06-28 04:40:53.614415 Train: epoch: 42 batch: 0/4, loss: 0.002508 2023-06-28 04:41:38.977191 Validation: avg loss: 1.4839, avg acc: 62.8571% 2023-06-28 04:41:53.546677 Train: epoch: 43 batch: 0/4, loss: 0.005065 2023-06-28 04:42:38.615712 Validation: avg loss: 1.4694, avg acc: 62.8571% 2023-06-28 04:42:52.866949 Train: epoch: 44 batch: 0/4, loss: 0.001588 2023-06-28 04:43:37.419490 Validation: avg loss: 1.4595, avg acc: 60.9524% 2023-06-28 04:43:51.441179 Train: epoch: 45 batch: 0/4, loss: 0.002320 2023-06-28 04:44:36.373416 Validation: avg loss: 1.4140, avg acc: 66.6667% 2023-06-28 04:44:50.575468 Train: epoch: 46 batch: 0/4, loss: 0.001628 2023-06-28 04:45:36.094658 Validation: avg loss: 1.3962, avg acc: 66.6667% 2023-06-28 04:45:50.360514 Train: epoch: 47 batch: 0/4, loss: 0.001421 2023-06-28 04:46:35.518807 Validation: avg loss: 1.3719, avg acc: 64.7619% 2023-06-28 04:46:49.783401 Train: epoch: 48 batch: 0/4, loss: 0.001688 2023-06-28 04:47:34.452598 Validation: avg loss: 1.3766, avg acc: 67.6190% 2023-06-28 04:47:48.920135 Train: epoch: 49 batch: 0/4, loss: 0.001522 2023-06-28 04:48:34.555909 Validation: avg loss: 1.3792, avg acc: 67.6190% 2023-06-28 04:48:48.703559 Train: epoch: 50 batch: 0/4, loss: 0.000546 2023-06-28 04:49:34.074328 Validation: avg loss: 1.3799, avg acc: 67.6190%