2023-06-28 01:27:29.498289 cuda 2023-06-28 01:27:44.178977 Train: epoch: 1 batch: 0/4, loss: 0.694665 2023-06-28 01:28:29.371643 Validation: avg loss: 0.6901, avg acc: 57.1429% 2023-06-28 01:28:43.662205 Train: epoch: 2 batch: 0/4, loss: 0.682679 2023-06-28 01:29:28.565725 Validation: avg loss: 0.6858, avg acc: 57.1429% 2023-06-28 01:29:43.024816 Train: epoch: 3 batch: 0/4, loss: 0.678544 2023-06-28 01:30:27.987655 Validation: avg loss: 0.6832, avg acc: 57.1429% 2023-06-28 01:30:42.736962 Train: epoch: 4 batch: 0/4, loss: 0.660189 2023-06-28 01:31:27.914631 Validation: avg loss: 0.6962, avg acc: 42.8571% 2023-06-28 01:31:42.189873 Train: epoch: 5 batch: 0/4, loss: 0.659297 2023-06-28 01:32:27.646864 Validation: avg loss: 0.6919, avg acc: 57.1429% 2023-06-28 01:32:41.879671 Train: epoch: 6 batch: 0/4, loss: 0.667431 2023-06-28 01:33:26.964715 Validation: avg loss: 0.7075, avg acc: 42.8571% 2023-06-28 01:33:41.063045 Train: epoch: 7 batch: 0/4, loss: 0.617283 2023-06-28 01:34:25.824487 Validation: avg loss: 0.6911, avg acc: 60.9524% 2023-06-28 01:34:40.323201 Train: epoch: 8 batch: 0/4, loss: 0.570127 2023-06-28 01:35:25.522091 Validation: avg loss: 0.6935, avg acc: 45.7143% 2023-06-28 01:35:39.993172 Train: epoch: 9 batch: 0/4, loss: 0.548969 2023-06-28 01:36:25.697874 Validation: avg loss: 0.7317, avg acc: 42.8571% 2023-06-28 01:36:39.958004 Train: epoch: 10 batch: 0/4, loss: 0.484664 2023-06-28 01:37:25.704423 Validation: avg loss: 0.7028, avg acc: 49.5238% 2023-06-28 01:37:40.575212 Train: epoch: 11 batch: 0/4, loss: 0.441138 2023-06-28 01:38:26.980730 Validation: avg loss: 0.7058, avg acc: 49.5238% 2023-06-28 01:38:41.458257 Train: epoch: 12 batch: 0/4, loss: 0.367233 2023-06-28 01:39:26.975605 Validation: avg loss: 0.7120, avg acc: 50.4762% 2023-06-28 01:39:41.237388 Train: epoch: 13 batch: 0/4, loss: 0.213344 2023-06-28 01:40:26.060785 Validation: avg loss: 0.6638, avg acc: 63.8095% 2023-06-28 01:40:40.391417 Train: epoch: 14 batch: 0/4, loss: 0.255976 2023-06-28 01:41:25.504246 Validation: avg loss: 0.6382, avg acc: 61.9048% 2023-06-28 01:41:39.780481 Train: epoch: 15 batch: 0/4, loss: 0.102169 2023-06-28 01:42:25.074077 Validation: avg loss: 0.7021, avg acc: 62.8571% 2023-06-28 01:42:39.402949 Train: epoch: 16 batch: 0/4, loss: 0.099181 2023-06-28 01:43:24.189954 Validation: avg loss: 0.7925, avg acc: 61.9048% 2023-06-28 01:43:38.854012 Train: epoch: 17 batch: 0/4, loss: 0.057370 2023-06-28 01:44:23.593833 Validation: avg loss: 0.9190, avg acc: 60.0000% 2023-06-28 01:44:38.082592 Train: epoch: 18 batch: 0/4, loss: 0.051161 2023-06-28 01:45:22.948901 Validation: avg loss: 1.1094, avg acc: 55.2381% 2023-06-28 01:45:37.120141 Train: epoch: 19 batch: 0/4, loss: 0.028416 2023-06-28 01:46:22.201313 Validation: avg loss: 1.1909, avg acc: 58.0952% 2023-06-28 01:46:36.615099 Train: epoch: 20 batch: 0/4, loss: 0.018945 2023-06-28 01:47:21.802085 Validation: avg loss: 1.2461, avg acc: 60.9524% 2023-06-28 01:47:36.094373 Train: epoch: 21 batch: 0/4, loss: 0.011535 2023-06-28 01:48:21.098979 Validation: avg loss: 1.2550, avg acc: 61.9048% 2023-06-28 01:48:35.396349 Train: epoch: 22 batch: 0/4, loss: 0.017535 2023-06-28 01:49:20.045914 Validation: avg loss: 1.1881, avg acc: 61.9048% 2023-06-28 01:49:34.214638 Train: epoch: 23 batch: 0/4, loss: 0.020899 2023-06-28 01:50:19.639548 Validation: avg loss: 1.2605, avg acc: 62.8571% 2023-06-28 01:50:33.690343 Train: epoch: 24 batch: 0/4, loss: 0.013029 2023-06-28 01:51:18.948007 Validation: avg loss: 1.4516, avg acc: 59.0476% 2023-06-28 01:51:33.346062 Train: epoch: 25 batch: 0/4, loss: 0.026440 2023-06-28 01:52:17.898719 Validation: avg loss: 1.4270, avg acc: 61.9048% 2023-06-28 01:52:32.075626 Train: epoch: 26 batch: 0/4, loss: 0.015461 2023-06-28 01:53:17.104184 Validation: avg loss: 1.4306, avg acc: 64.7619% 2023-06-28 01:53:31.273740 Train: epoch: 27 batch: 0/4, loss: 0.013917 2023-06-28 01:54:16.904646 Validation: avg loss: 1.4380, avg acc: 63.8095% 2023-06-28 01:54:31.165321 Train: epoch: 28 batch: 0/4, loss: 0.009092 2023-06-28 01:55:16.958980 Validation: avg loss: 1.4684, avg acc: 60.0000% 2023-06-28 01:55:31.080000 Train: epoch: 29 batch: 0/4, loss: 0.027234 2023-06-28 01:56:15.931152 Validation: avg loss: 1.5698, avg acc: 63.8095% 2023-06-28 01:56:30.209265 Train: epoch: 30 batch: 0/4, loss: 0.005990 2023-06-28 01:57:15.520408 Validation: avg loss: 1.5776, avg acc: 71.4286% 2023-06-28 01:57:29.918785 Train: epoch: 31 batch: 0/4, loss: 0.007899 2023-06-28 01:58:15.301725 Validation: avg loss: 1.6919, avg acc: 66.6667% 2023-06-28 01:58:30.041185 Train: epoch: 32 batch: 0/4, loss: 0.010279 2023-06-28 01:59:15.084527 Validation: avg loss: 1.8546, avg acc: 62.8571% 2023-06-28 01:59:29.231390 Train: epoch: 33 batch: 0/4, loss: 0.007202 2023-06-28 02:00:14.169353 Validation: avg loss: 1.7220, avg acc: 63.8095% 2023-06-28 02:00:28.461046 Train: epoch: 34 batch: 0/4, loss: 0.009014 2023-06-28 02:01:13.840142 Validation: avg loss: 1.5476, avg acc: 66.6667% 2023-06-28 02:01:28.402509 Train: epoch: 35 batch: 0/4, loss: 0.011448 2023-06-28 02:02:14.837432 Validation: avg loss: 1.4587, avg acc: 64.7619% 2023-06-28 02:02:29.477797 Train: epoch: 36 batch: 0/4, loss: 0.004358 2023-06-28 02:03:14.868202 Validation: avg loss: 1.5383, avg acc: 60.0000% 2023-06-28 02:03:29.201787 Train: epoch: 37 batch: 0/4, loss: 0.009107 2023-06-28 02:04:13.978770 Validation: avg loss: 1.6280, avg acc: 60.0000% 2023-06-28 02:04:28.043453 Train: epoch: 38 batch: 0/4, loss: 0.012865 2023-06-28 02:05:13.314995 Validation: avg loss: 1.4671, avg acc: 60.9524% 2023-06-28 02:05:27.596150 Train: epoch: 39 batch: 0/4, loss: 0.009916 2023-06-28 02:06:14.256498 Validation: avg loss: 1.5654, avg acc: 67.6190% 2023-06-28 02:06:31.292249 Train: epoch: 40 batch: 0/4, loss: 0.004399 2023-06-28 02:07:25.473131 Validation: avg loss: 1.6744, avg acc: 67.6190% 2023-06-28 02:07:42.836883 Train: epoch: 41 batch: 0/4, loss: 0.005982 2023-06-28 02:08:37.663422 Validation: avg loss: 1.6835, avg acc: 64.7619% 2023-06-28 02:08:54.637783 Train: epoch: 42 batch: 0/4, loss: 0.003240 2023-06-28 02:09:47.997422 Validation: avg loss: 1.6657, avg acc: 63.8095% 2023-06-28 02:10:04.771465 Train: epoch: 43 batch: 0/4, loss: 0.006902 2023-06-28 02:10:58.377040 Validation: avg loss: 1.7045, avg acc: 65.7143% 2023-06-28 02:11:15.395956 Train: epoch: 44 batch: 0/4, loss: 0.010419 2023-06-28 02:12:09.470289 Validation: avg loss: 1.7507, avg acc: 66.6667% 2023-06-28 02:12:26.317963 Train: epoch: 45 batch: 0/4, loss: 0.003494 2023-06-28 02:13:14.431945 Validation: avg loss: 1.7484, avg acc: 66.6667% 2023-06-28 02:13:28.901484 Train: epoch: 46 batch: 0/4, loss: 0.001555 2023-06-28 02:14:13.942030 Validation: avg loss: 1.8422, avg acc: 60.9524% 2023-06-28 02:14:28.333940 Train: epoch: 47 batch: 0/4, loss: 0.003026 2023-06-28 02:15:13.232646 Validation: avg loss: 2.1813, avg acc: 60.9524% 2023-06-28 02:15:27.601842 Train: epoch: 48 batch: 0/4, loss: 0.001304 2023-06-28 02:16:12.214901 Validation: avg loss: 2.1655, avg acc: 61.9048% 2023-06-28 02:16:26.543083 Train: epoch: 49 batch: 0/4, loss: 0.003734 2023-06-28 02:17:11.206616 Validation: avg loss: 2.1269, avg acc: 60.0000% 2023-06-28 02:17:25.427501 Train: epoch: 50 batch: 0/4, loss: 0.008758 2023-06-28 02:18:10.157643 Validation: avg loss: 2.0094, avg acc: 62.8571%