from typing import Union from torch import nn import transformers import torch from PIL import Image class CLIPModel(nn.Module): def __init__(self, model_name: str = "openai/clip-vit-base-patch32", processor_name=None): super(CLIPModel, self).__init__() if processor_name is None: processor_name = model_name self.model = transformers.CLIPModel.from_pretrained(model_name) self.processor = transformers.CLIPProcessor.from_pretrained(processor_name) def __repr__(self): return "CLIPModel()" def forward(self, features): image_embeds = [] text_embeds = [] if "pixel_values" in features: vision_outputs = self.model.vision_model(pixel_values=features["pixel_values"]) image_embeds = self.model.visual_projection(vision_outputs[1]) if "input_ids" in features: text_outputs = self.model.text_model( input_ids=features.get("input_ids"), attention_mask=features.get("attention_mask", None), position_ids=features.get("position_ids", None), output_attentions=features.get("output_attentions", None), output_hidden_states=features.get("output_hidden_states", None), ) text_embeds = self.model.text_projection(text_outputs[1]) sentence_embedding = [] image_features = iter(image_embeds) text_features = iter(text_embeds) for idx, input_type in enumerate(features["image_text_info"]): if input_type == 0: sentence_embedding.append(next(image_features)) else: sentence_embedding.append(next(text_features)) features["sentence_embedding"] = torch.stack(sentence_embedding).float() return features def tokenize(self, texts, padding: Union[str, bool] = True): images = [] texts_values = [] image_text_info = [] for idx, data in enumerate(texts): if isinstance(data, Image.Image): # An Image images.append(data) image_text_info.append(0) else: # A text texts_values.append(data) image_text_info.append(1) if len(texts_values) == 0: texts_values = None if len(images) == 0: images = None inputs = self.processor(text=texts_values, images=images, return_tensors="pt", padding=padding) inputs["image_text_info"] = image_text_info return inputs def save(self, output_path: str): self.model.save_pretrained(output_path) self.processor.save_pretrained(output_path) @staticmethod def load(input_path: str): return CLIPModel(model_name=input_path)