from functools import wraps from transformers import AutoModelForSequenceClassification, AutoTokenizer, AutoConfig import numpy as np import logging import os from typing import Dict, Type, Callable, List, Optional import torch from torch import nn from torch.optim import Optimizer from torch.utils.data import DataLoader from tqdm.autonotebook import tqdm, trange from transformers import is_torch_npu_available from transformers.utils import PushToHubMixin from .. import SentenceTransformer, util from ..evaluation import SentenceEvaluator from ..util import get_device_name logger = logging.getLogger(__name__) class CrossEncoder(PushToHubMixin): """ A CrossEncoder takes exactly two sentences / texts as input and either predicts a score or label for this sentence pair. It can for example predict the similarity of the sentence pair on a scale of 0 ... 1. It does not yield a sentence embedding and does not work for individual sentences. :param model_name: A model name from Hugging Face Hub that can be loaded with AutoModel, or a path to a local model. We provide several pre-trained CrossEncoder models that can be used for common tasks. :param num_labels: Number of labels of the classifier. If 1, the CrossEncoder is a regression model that outputs a continuous score 0...1. If > 1, it output several scores that can be soft-maxed to get probability scores for the different classes. :param max_length: Max length for input sequences. Longer sequences will be truncated. If None, max length of the model will be used :param device: Device that should be used for the model. If None, it will use CUDA if available. :param tokenizer_args: Arguments passed to AutoTokenizer :param automodel_args: Arguments passed to AutoModelForSequenceClassification :param revision: The specific model version to use. It can be a branch name, a tag name, or a commit id, for a stored model on Hugging Face. :param default_activation_function: Callable (like nn.Sigmoid) about the default activation function that should be used on-top of model.predict(). If None. nn.Sigmoid() will be used if num_labels=1, else nn.Identity() :param classifier_dropout: The dropout ratio for the classification head. """ def __init__( self, model_name: str, num_labels: int = None, max_length: int = None, device: str = None, tokenizer_args: Dict = {}, automodel_args: Dict = {}, revision: Optional[str] = None, default_activation_function=None, classifier_dropout: float = None, ): self.config = AutoConfig.from_pretrained(model_name, revision=revision) classifier_trained = True if self.config.architectures is not None: classifier_trained = any( [arch.endswith("ForSequenceClassification") for arch in self.config.architectures] ) if classifier_dropout is not None: self.config.classifier_dropout = classifier_dropout if num_labels is None and not classifier_trained: num_labels = 1 if num_labels is not None: self.config.num_labels = num_labels self.model = AutoModelForSequenceClassification.from_pretrained( model_name, config=self.config, revision=revision, **automodel_args ) self.tokenizer = AutoTokenizer.from_pretrained(model_name, revision=revision, **tokenizer_args) self.max_length = max_length if device is None: device = get_device_name() logger.info("Use pytorch device: {}".format(device)) self._target_device = torch.device(device) if default_activation_function is not None: self.default_activation_function = default_activation_function try: self.config.sbert_ce_default_activation_function = util.fullname(self.default_activation_function) except Exception as e: logger.warning( "Was not able to update config about the default_activation_function: {}".format(str(e)) ) elif ( hasattr(self.config, "sbert_ce_default_activation_function") and self.config.sbert_ce_default_activation_function is not None ): self.default_activation_function = util.import_from_string( self.config.sbert_ce_default_activation_function )() else: self.default_activation_function = nn.Sigmoid() if self.config.num_labels == 1 else nn.Identity() def smart_batching_collate(self, batch): texts = [[] for _ in range(len(batch[0].texts))] labels = [] for example in batch: for idx, text in enumerate(example.texts): texts[idx].append(text.strip()) labels.append(example.label) tokenized = self.tokenizer( *texts, padding=True, truncation="longest_first", return_tensors="pt", max_length=self.max_length ) labels = torch.tensor(labels, dtype=torch.float if self.config.num_labels == 1 else torch.long).to( self._target_device ) for name in tokenized: tokenized[name] = tokenized[name].to(self._target_device) return tokenized, labels def smart_batching_collate_text_only(self, batch): texts = [[] for _ in range(len(batch[0]))] for example in batch: for idx, text in enumerate(example): texts[idx].append(text.strip()) tokenized = self.tokenizer( *texts, padding=True, truncation="longest_first", return_tensors="pt", max_length=self.max_length ) for name in tokenized: tokenized[name] = tokenized[name].to(self._target_device) return tokenized def fit( self, train_dataloader: DataLoader, evaluator: SentenceEvaluator = None, epochs: int = 1, loss_fct=None, activation_fct=nn.Identity(), scheduler: str = "WarmupLinear", warmup_steps: int = 10000, optimizer_class: Type[Optimizer] = torch.optim.AdamW, optimizer_params: Dict[str, object] = {"lr": 2e-5}, weight_decay: float = 0.01, evaluation_steps: int = 0, output_path: str = None, save_best_model: bool = True, max_grad_norm: float = 1, use_amp: bool = False, callback: Callable[[float, int, int], None] = None, show_progress_bar: bool = True, ): """ Train the model with the given training objective Each training objective is sampled in turn for one batch. We sample only as many batches from each objective as there are in the smallest one to make sure of equal training with each dataset. :param train_dataloader: DataLoader with training InputExamples :param evaluator: An evaluator (sentence_transformers.evaluation) evaluates the model performance during training on held-out dev data. It is used to determine the best model that is saved to disc. :param epochs: Number of epochs for training :param loss_fct: Which loss function to use for training. If None, will use nn.BCEWithLogitsLoss() if self.config.num_labels == 1 else nn.CrossEntropyLoss() :param activation_fct: Activation function applied on top of logits output of model. :param scheduler: Learning rate scheduler. Available schedulers: constantlr, warmupconstant, warmuplinear, warmupcosine, warmupcosinewithhardrestarts :param warmup_steps: Behavior depends on the scheduler. For WarmupLinear (default), the learning rate is increased from o up to the maximal learning rate. After these many training steps, the learning rate is decreased linearly back to zero. :param optimizer_class: Optimizer :param optimizer_params: Optimizer parameters :param weight_decay: Weight decay for model parameters :param evaluation_steps: If > 0, evaluate the model using evaluator after each number of training steps :param output_path: Storage path for the model and evaluation files :param save_best_model: If true, the best model (according to evaluator) is stored at output_path :param max_grad_norm: Used for gradient normalization. :param use_amp: Use Automatic Mixed Precision (AMP). Only for Pytorch >= 1.6.0 :param callback: Callback function that is invoked after each evaluation. It must accept the following three parameters in this order: `score`, `epoch`, `steps` :param show_progress_bar: If True, output a tqdm progress bar """ train_dataloader.collate_fn = self.smart_batching_collate if use_amp: if is_torch_npu_available(): scaler = torch.npu.amp.GradScaler() else: scaler = torch.cuda.amp.GradScaler() self.model.to(self._target_device) if output_path is not None: os.makedirs(output_path, exist_ok=True) self.best_score = -9999999 num_train_steps = int(len(train_dataloader) * epochs) # Prepare optimizers param_optimizer = list(self.model.named_parameters()) no_decay = ["bias", "LayerNorm.bias", "LayerNorm.weight"] optimizer_grouped_parameters = [ { "params": [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)], "weight_decay": weight_decay, }, {"params": [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], "weight_decay": 0.0}, ] optimizer = optimizer_class(optimizer_grouped_parameters, **optimizer_params) if isinstance(scheduler, str): scheduler = SentenceTransformer._get_scheduler( optimizer, scheduler=scheduler, warmup_steps=warmup_steps, t_total=num_train_steps ) if loss_fct is None: loss_fct = nn.BCEWithLogitsLoss() if self.config.num_labels == 1 else nn.CrossEntropyLoss() skip_scheduler = False for epoch in trange(epochs, desc="Epoch", disable=not show_progress_bar): training_steps = 0 self.model.zero_grad() self.model.train() for features, labels in tqdm( train_dataloader, desc="Iteration", smoothing=0.05, disable=not show_progress_bar ): if use_amp: with torch.autocast(device_type=self._target_device.type): model_predictions = self.model(**features, return_dict=True) logits = activation_fct(model_predictions.logits) if self.config.num_labels == 1: logits = logits.view(-1) loss_value = loss_fct(logits, labels) scale_before_step = scaler.get_scale() scaler.scale(loss_value).backward() scaler.unscale_(optimizer) torch.nn.utils.clip_grad_norm_(self.model.parameters(), max_grad_norm) scaler.step(optimizer) scaler.update() skip_scheduler = scaler.get_scale() != scale_before_step else: model_predictions = self.model(**features, return_dict=True) logits = activation_fct(model_predictions.logits) if self.config.num_labels == 1: logits = logits.view(-1) loss_value = loss_fct(logits, labels) loss_value.backward() torch.nn.utils.clip_grad_norm_(self.model.parameters(), max_grad_norm) optimizer.step() optimizer.zero_grad() if not skip_scheduler: scheduler.step() training_steps += 1 if evaluator is not None and evaluation_steps > 0 and training_steps % evaluation_steps == 0: self._eval_during_training( evaluator, output_path, save_best_model, epoch, training_steps, callback ) self.model.zero_grad() self.model.train() if evaluator is not None: self._eval_during_training(evaluator, output_path, save_best_model, epoch, -1, callback) def predict( self, sentences: List[List[str]], batch_size: int = 32, show_progress_bar: bool = None, num_workers: int = 0, activation_fct=None, apply_softmax=False, convert_to_numpy: bool = True, convert_to_tensor: bool = False, ): """ Performs predicts with the CrossEncoder on the given sentence pairs. :param sentences: A list of sentence pairs [[Sent1, Sent2], [Sent3, Sent4]] :param batch_size: Batch size for encoding :param show_progress_bar: Output progress bar :param num_workers: Number of workers for tokenization :param activation_fct: Activation function applied on the logits output of the CrossEncoder. If None, nn.Sigmoid() will be used if num_labels=1, else nn.Identity :param convert_to_numpy: Convert the output to a numpy matrix. :param apply_softmax: If there are more than 2 dimensions and apply_softmax=True, applies softmax on the logits output :param convert_to_tensor: Convert the output to a tensor. :return: Predictions for the passed sentence pairs """ input_was_string = False if isinstance(sentences[0], str): # Cast an individual sentence to a list with length 1 sentences = [sentences] input_was_string = True inp_dataloader = DataLoader( sentences, batch_size=batch_size, collate_fn=self.smart_batching_collate_text_only, num_workers=num_workers, shuffle=False, ) if show_progress_bar is None: show_progress_bar = ( logger.getEffectiveLevel() == logging.INFO or logger.getEffectiveLevel() == logging.DEBUG ) iterator = inp_dataloader if show_progress_bar: iterator = tqdm(inp_dataloader, desc="Batches") if activation_fct is None: activation_fct = self.default_activation_function pred_scores = [] self.model.eval() self.model.to(self._target_device) with torch.no_grad(): for features in iterator: model_predictions = self.model(**features, return_dict=True) logits = activation_fct(model_predictions.logits) if apply_softmax and len(logits[0]) > 1: logits = torch.nn.functional.softmax(logits, dim=1) pred_scores.extend(logits) if self.config.num_labels == 1: pred_scores = [score[0] for score in pred_scores] if convert_to_tensor: pred_scores = torch.stack(pred_scores) elif convert_to_numpy: pred_scores = np.asarray([score.cpu().detach().numpy() for score in pred_scores]) if input_was_string: pred_scores = pred_scores[0] return pred_scores def rank( self, query: str, documents: List[str], top_k: Optional[int] = None, return_documents: bool = False, batch_size: int = 32, show_progress_bar: bool = None, num_workers: int = 0, activation_fct=None, apply_softmax=False, convert_to_numpy: bool = True, convert_to_tensor: bool = False, ) -> List[Dict]: """ Performs ranking with the CrossEncoder on the given query and documents. Returns a sorted list with the document indices and scores. Example: :: from sentence_transformers import CrossEncoder model = CrossEncoder("cross-encoder/ms-marco-MiniLM-L-6-v2") query = "Who wrote 'To Kill a Mockingbird'?" documents = [ "'To Kill a Mockingbird' is a novel by Harper Lee published in 1960. It was immediately successful, winning the Pulitzer Prize, and has become a classic of modern American literature.", "The novel 'Moby-Dick' was written by Herman Melville and first published in 1851. It is considered a masterpiece of American literature and deals with complex themes of obsession, revenge, and the conflict between good and evil.", "Harper Lee, an American novelist widely known for her novel 'To Kill a Mockingbird', was born in 1926 in Monroeville, Alabama. She received the Pulitzer Prize for Fiction in 1961.", "Jane Austen was an English novelist known primarily for her six major novels, which interpret, critique and comment upon the British landed gentry at the end of the 18th century.", "The 'Harry Potter' series, which consists of seven fantasy novels written by British author J.K. Rowling, is among the most popular and critically acclaimed books of the modern era.", "'The Great Gatsby', a novel written by American author F. Scott Fitzgerald, was published in 1925. The story is set in the Jazz Age and follows the life of millionaire Jay Gatsby and his pursuit of Daisy Buchanan." ] model.rank(query, documents, return_documents=True) :: [{'corpus_id': 0, 'score': 10.67858, 'text': "'To Kill a Mockingbird' is a novel by Harper Lee published in 1960. It was immediately successful, winning the Pulitzer Prize, and has become a classic of modern American literature."}, {'corpus_id': 2, 'score': 9.761677, 'text': "Harper Lee, an American novelist widely known for her novel 'To Kill a Mockingbird', was born in 1926 in Monroeville, Alabama. She received the Pulitzer Prize for Fiction in 1961."}, {'corpus_id': 1, 'score': -3.3099542, 'text': "The novel 'Moby-Dick' was written by Herman Melville and first published in 1851. It is considered a masterpiece of American literature and deals with complex themes of obsession, revenge, and the conflict between good and evil."}, {'corpus_id': 5, 'score': -4.8989105, 'text': "'The Great Gatsby', a novel written by American author F. Scott Fitzgerald, was published in 1925. The story is set in the Jazz Age and follows the life of millionaire Jay Gatsby and his pursuit of Daisy Buchanan."}, {'corpus_id': 4, 'score': -5.082967, 'text': "The 'Harry Potter' series, which consists of seven fantasy novels written by British author J.K. Rowling, is among the most popular and critically acclaimed books of the modern era."}] :param query: A single query :param documents: A list of documents :param top_k: Return the top-k documents. If None, all documents are returned. :param return_documents: If True, also returns the documents. If False, only returns the indices and scores. :param batch_size: Batch size for encoding :param show_progress_bar: Output progress bar :param num_workers: Number of workers for tokenization :param activation_fct: Activation function applied on the logits output of the CrossEncoder. If None, nn.Sigmoid() will be used if num_labels=1, else nn.Identity :param convert_to_numpy: Convert the output to a numpy matrix. :param apply_softmax: If there are more than 2 dimensions and apply_softmax=True, applies softmax on the logits output :param convert_to_tensor: Convert the output to a tensor. :return: A sorted list with the document indices and scores, and optionally also documents. """ query_doc_pairs = [[query, doc] for doc in documents] scores = self.predict( query_doc_pairs, batch_size=batch_size, show_progress_bar=show_progress_bar, num_workers=num_workers, activation_fct=activation_fct, apply_softmax=apply_softmax, convert_to_numpy=convert_to_numpy, convert_to_tensor=convert_to_tensor, ) results = [] for i in range(len(scores)): if return_documents: results.append({"corpus_id": i, "score": scores[i], "text": documents[i]}) else: results.append({"corpus_id": i, "score": scores[i]}) results = sorted(results, key=lambda x: x["score"], reverse=True) return results[:top_k] def _eval_during_training(self, evaluator, output_path, save_best_model, epoch, steps, callback): """Runs evaluation during the training""" if evaluator is not None: score = evaluator(self, output_path=output_path, epoch=epoch, steps=steps) if callback is not None: callback(score, epoch, steps) if score > self.best_score: self.best_score = score if save_best_model: self.save(output_path) def save(self, path: str, *, safe_serialization: bool = True, **kwargs) -> None: """ Saves the model and tokenizer to path; identical to `save_pretrained` """ if path is None: return logger.info("Save model to {}".format(path)) self.model.save_pretrained(path, safe_serialization=safe_serialization, **kwargs) self.tokenizer.save_pretrained(path, **kwargs) def save_pretrained(self, path: str, *, safe_serialization: bool = True, **kwargs) -> None: """ Saves the model and tokenizer to path; identical to `save` """ return self.save(path, safe_serialization=safe_serialization, **kwargs) @wraps(PushToHubMixin.push_to_hub) def push_to_hub( self, repo_id: str, *, commit_message: Optional[str] = None, private: Optional[bool] = None, safe_serialization: bool = True, tags: Optional[List[str]] = None, **kwargs, ) -> str: if isinstance(tags, str): tags = [tags] elif tags is None: tags = [] if "cross-encoder" not in tags: tags.insert(0, "cross-encoder") return super().push_to_hub( repo_id=repo_id, safe_serialization=safe_serialization, commit_message=commit_message, private=private, tags=tags, **kwargs, )