from contextlib import contextmanager import json import logging import os import shutil from collections import OrderedDict import warnings from typing import List, Dict, Literal, Tuple, Iterable, Type, Union, Callable, Optional, TYPE_CHECKING import numpy as np from numpy import ndarray import transformers from transformers import is_torch_npu_available from huggingface_hub import HfApi import torch from torch import nn, Tensor, device from torch.optim import Optimizer from torch.utils.data import DataLoader import torch.multiprocessing as mp from tqdm.autonotebook import trange import math import queue import tempfile from . import __MODEL_HUB_ORGANIZATION__ from .evaluation import SentenceEvaluator from .util import ( import_from_string, batch_to_device, fullname, is_sentence_transformer_model, load_dir_path, load_file_path, save_to_hub_args_decorator, get_device_name, truncate_embeddings, ) from .quantization import quantize_embeddings from .models import Transformer, Pooling, Normalize from .model_card_templates import ModelCardTemplate from . import __version__ logger = logging.getLogger(__name__) if TYPE_CHECKING: from sentence_transformers.readers import InputExample class SentenceTransformer(nn.Sequential): """ Loads or creates a SentenceTransformer model that can be used to map sentences / text to embeddings. :param model_name_or_path: If it is a filepath on disc, it loads the model from that path. If it is not a path, it first tries to download a pre-trained SentenceTransformer model. If that fails, tries to construct a model from the Hugging Face Hub with that name. :param modules: A list of torch Modules that should be called sequentially, can be used to create custom SentenceTransformer models from scratch. :param device: Device (like "cuda", "cpu", "mps", "npu") that should be used for computation. If None, checks if a GPU can be used. :param prompts: A dictionary with prompts for the model. The key is the prompt name, the value is the prompt text. The prompt text will be prepended before any text to encode. For example: `{"query": "query: ", "passage": "passage: "}` or `{"clustering": "Identify the main category based on the titles in "}`. :param default_prompt_name: The name of the prompt that should be used by default. If not set, no prompt will be applied. :param cache_folder: Path to store models. Can also be set by the SENTENCE_TRANSFORMERS_HOME environment variable. :param revision: The specific model version to use. It can be a branch name, a tag name, or a commit id, for a stored model on Hugging Face. :param trust_remote_code: Whether or not to allow for custom models defined on the Hub in their own modeling files. This option should only be set to True for repositories you trust and in which you have read the code, as it will execute code present on the Hub on your local machine. :param token: Hugging Face authentication token to download private models. :param truncate_dim: The dimension to truncate sentence embeddings to. `None` does no truncation. Truncation is only applicable during inference when `.encode` is called. """ def __init__( self, model_name_or_path: Optional[str] = None, modules: Optional[Iterable[nn.Module]] = None, device: Optional[str] = None, prompts: Optional[Dict[str, str]] = None, default_prompt_name: Optional[str] = None, cache_folder: Optional[str] = None, trust_remote_code: bool = False, revision: Optional[str] = None, token: Optional[Union[bool, str]] = None, use_auth_token: Optional[Union[bool, str]] = None, truncate_dim: Optional[int] = None, ): # Note: self._load_sbert_model can also update `self.prompts` and `self.default_prompt_name` self.prompts = prompts or {} self.default_prompt_name = default_prompt_name self.truncate_dim = truncate_dim self._model_card_vars = {} self._model_card_text = None self._model_config = {} if use_auth_token is not None: warnings.warn( "The `use_auth_token` argument is deprecated and will be removed in v3 of SentenceTransformers.", FutureWarning, ) if token is not None: raise ValueError( "`token` and `use_auth_token` are both specified. Please set only the argument `token`." ) token = use_auth_token if cache_folder is None: cache_folder = os.getenv("SENTENCE_TRANSFORMERS_HOME") if model_name_or_path is not None and model_name_or_path != "": logger.info("Load pretrained SentenceTransformer: {}".format(model_name_or_path)) # Old models that don't belong to any organization basic_transformer_models = [ "albert-base-v1", "albert-base-v2", "albert-large-v1", "albert-large-v2", "albert-xlarge-v1", "albert-xlarge-v2", "albert-xxlarge-v1", "albert-xxlarge-v2", "bert-base-cased-finetuned-mrpc", "bert-base-cased", "bert-base-chinese", "bert-base-german-cased", "bert-base-german-dbmdz-cased", "bert-base-german-dbmdz-uncased", "bert-base-multilingual-cased", "bert-base-multilingual-uncased", "bert-base-uncased", "bert-large-cased-whole-word-masking-finetuned-squad", "bert-large-cased-whole-word-masking", "bert-large-cased", "bert-large-uncased-whole-word-masking-finetuned-squad", "bert-large-uncased-whole-word-masking", "bert-large-uncased", "camembert-base", "ctrl", "distilbert-base-cased-distilled-squad", "distilbert-base-cased", "distilbert-base-german-cased", "distilbert-base-multilingual-cased", "distilbert-base-uncased-distilled-squad", "distilbert-base-uncased-finetuned-sst-2-english", "distilbert-base-uncased", "distilgpt2", "distilroberta-base", "gpt2-large", "gpt2-medium", "gpt2-xl", "gpt2", "openai-gpt", "roberta-base-openai-detector", "roberta-base", "roberta-large-mnli", "roberta-large-openai-detector", "roberta-large", "t5-11b", "t5-3b", "t5-base", "t5-large", "t5-small", "transfo-xl-wt103", "xlm-clm-ende-1024", "xlm-clm-enfr-1024", "xlm-mlm-100-1280", "xlm-mlm-17-1280", "xlm-mlm-en-2048", "xlm-mlm-ende-1024", "xlm-mlm-enfr-1024", "xlm-mlm-enro-1024", "xlm-mlm-tlm-xnli15-1024", "xlm-mlm-xnli15-1024", "xlm-roberta-base", "xlm-roberta-large-finetuned-conll02-dutch", "xlm-roberta-large-finetuned-conll02-spanish", "xlm-roberta-large-finetuned-conll03-english", "xlm-roberta-large-finetuned-conll03-german", "xlm-roberta-large", "xlnet-base-cased", "xlnet-large-cased", ] if not os.path.exists(model_name_or_path): # Not a path, load from hub if "\\" in model_name_or_path or model_name_or_path.count("/") > 1: raise ValueError("Path {} not found".format(model_name_or_path)) if "/" not in model_name_or_path and model_name_or_path.lower() not in basic_transformer_models: # A model from sentence-transformers model_name_or_path = __MODEL_HUB_ORGANIZATION__ + "/" + model_name_or_path if is_sentence_transformer_model(model_name_or_path, token, cache_folder=cache_folder, revision=revision): modules = self._load_sbert_model( model_name_or_path, token=token, cache_folder=cache_folder, revision=revision, trust_remote_code=trust_remote_code, ) else: modules = self._load_auto_model( model_name_or_path, token=token, cache_folder=cache_folder, revision=revision, trust_remote_code=trust_remote_code, ) if modules is not None and not isinstance(modules, OrderedDict): modules = OrderedDict([(str(idx), module) for idx, module in enumerate(modules)]) super().__init__(modules) if device is None: device = get_device_name() logger.info("Use pytorch device_name: {}".format(device)) self.to(device) self.is_hpu_graph_enabled = False if self.default_prompt_name is not None and self.default_prompt_name not in self.prompts: raise ValueError( f"Default prompt name '{self.default_prompt_name}' not found in the configured prompts " f"dictionary with keys {list(self.prompts.keys())!r}." ) if self.prompts: logger.info(f"{len(self.prompts)} prompts are loaded, with the keys: {list(self.prompts.keys())}") if self.default_prompt_name: logger.warning( f"Default prompt name is set to '{self.default_prompt_name}'. " "This prompt will be applied to all `encode()` calls, except if `encode()` " "is called with `prompt` or `prompt_name` parameters." ) # Ideally, INSTRUCTOR models should set `include_prompt=False` in their pooling configuration, but # that would be a breaking change for users currently using the InstructorEmbedding project. # So, instead we hardcode setting it for the main INSTRUCTOR models, and otherwise give a warning if we # suspect the user is using an INSTRUCTOR model. if model_name_or_path in ("hkunlp/instructor-base", "hkunlp/instructor-large", "hkunlp/instructor-xl"): self.set_pooling_include_prompt(include_prompt=False) elif ( model_name_or_path and "/" in model_name_or_path and "instructor" in model_name_or_path.split("/")[1].lower() ): if any([module.include_prompt for module in self if isinstance(module, Pooling)]): logger.warning( "Instructor models require `include_prompt=False` in the pooling configuration. " "Either update the model configuration or call `model.set_pooling_include_prompt(False)` after loading the model." ) def encode( self, sentences: Union[str, List[str]], prompt_name: Optional[str] = None, prompt: Optional[str] = None, batch_size: int = 32, show_progress_bar: bool = None, output_value: Optional[Literal["sentence_embedding", "token_embeddings"]] = "sentence_embedding", precision: Literal["float32", "int8", "uint8", "binary", "ubinary"] = "float32", convert_to_numpy: bool = True, convert_to_tensor: bool = False, device: str = None, normalize_embeddings: bool = False, ) -> Union[List[Tensor], ndarray, Tensor]: """ Computes sentence embeddings. :param sentences: the sentences to embed. :param prompt_name: The name of the prompt to use for encoding. Must be a key in the `prompts` dictionary, which is either set in the constructor or loaded from the model configuration. For example if `prompt_name` is ``"query"`` and the `prompts` is ``{"query": "query: ", ...}``, then the sentence "What is the capital of France?" will be encoded as "query: What is the capital of France?" because the sentence is appended to the prompt. If `prompt` is also set, this argument is ignored. :param prompt: The prompt to use for encoding. For example, if the prompt is ``"query: "``, then the sentence "What is the capital of France?" will be encoded as "query: What is the capital of France?" because the sentence is appended to the prompt. If `prompt` is set, `prompt_name` is ignored. :param batch_size: the batch size used for the computation. :param show_progress_bar: Whether to output a progress bar when encode sentences. :param output_value: The type of embeddings to return: "sentence_embedding" to get sentence embeddings, "token_embeddings" to get wordpiece token embeddings, and `None`, to get all output values. Defaults to "sentence_embedding". :param precision: The precision to use for the embeddings. Can be "float32", "int8", "uint8", "binary", or "ubinary". All non-float32 precisions are quantized embeddings. Quantized embeddings are smaller in size and faster to compute, but may have a lower accuracy. They are useful for reducing the size of the embeddings of a corpus for semantic search, among other tasks. Defaults to "float32". :param convert_to_numpy: Whether the output should be a list of numpy vectors. If False, it is a list of PyTorch tensors. :param convert_to_tensor: Whether the output should be one large tensor. Overwrites `convert_to_numpy`. :param device: Which `torch.device` to use for the computation. :param normalize_embeddings: Whether to normalize returned vectors to have length 1. In that case, the faster dot-product (util.dot_score) instead of cosine similarity can be used. :return: By default, a 2d numpy array with shape [num_inputs, output_dimension] is returned. If only one string input is provided, then the output is a 1d array with shape [output_dimension]. If `convert_to_tensor`, a torch Tensor is returned instead. If `self.truncate_dim <= output_dimension` then output_dimension is `self.truncate_dim`. """ if self.device.type == "hpu" and not self.is_hpu_graph_enabled: import habana_frameworks.torch as ht ht.hpu.wrap_in_hpu_graph(self, disable_tensor_cache=True) self.is_hpu_graph_enabled = True self.eval() if show_progress_bar is None: show_progress_bar = ( logger.getEffectiveLevel() == logging.INFO or logger.getEffectiveLevel() == logging.DEBUG ) if convert_to_tensor: convert_to_numpy = False if output_value != "sentence_embedding": convert_to_tensor = False convert_to_numpy = False input_was_string = False if isinstance(sentences, str) or not hasattr( sentences, "__len__" ): # Cast an individual sentence to a list with length 1 sentences = [sentences] input_was_string = True if prompt is None: if prompt_name is not None: try: prompt = self.prompts[prompt_name] except KeyError: raise ValueError( f"Prompt name '{prompt_name}' not found in the configured prompts dictionary with keys {list(self.prompts.keys())!r}." ) elif self.default_prompt_name is not None: prompt = self.prompts.get(self.default_prompt_name, None) else: if prompt_name is not None: logger.warning( "Encode with either a `prompt`, a `prompt_name`, or neither, but not both. " "Ignoring the `prompt_name` in favor of `prompt`." ) extra_features = {} if prompt is not None: sentences = [prompt + sentence for sentence in sentences] # Some models (e.g. INSTRUCTOR, GRIT) require removing the prompt before pooling # Tracking the prompt length allow us to remove the prompt during pooling tokenized_prompt = self.tokenize([prompt]) if "input_ids" in tokenized_prompt: extra_features["prompt_length"] = tokenized_prompt["input_ids"].shape[-1] - 1 if device is None: device = self.device self.to(device) all_embeddings = [] length_sorted_idx = np.argsort([-self._text_length(sen) for sen in sentences]) sentences_sorted = [sentences[idx] for idx in length_sorted_idx] for start_index in trange(0, len(sentences), batch_size, desc="Batches", disable=not show_progress_bar): sentences_batch = sentences_sorted[start_index : start_index + batch_size] features = self.tokenize(sentences_batch) features = batch_to_device(features, device) features.update(extra_features) with torch.no_grad(): out_features = self.forward(features) out_features["sentence_embedding"] = truncate_embeddings( out_features["sentence_embedding"], self.truncate_dim ) if output_value == "token_embeddings": embeddings = [] for token_emb, attention in zip(out_features[output_value], out_features["attention_mask"]): last_mask_id = len(attention) - 1 while last_mask_id > 0 and attention[last_mask_id].item() == 0: last_mask_id -= 1 embeddings.append(token_emb[0 : last_mask_id + 1]) elif output_value is None: # Return all outputs embeddings = [] for sent_idx in range(len(out_features["sentence_embedding"])): row = {name: out_features[name][sent_idx] for name in out_features} embeddings.append(row) else: # Sentence embeddings embeddings = out_features[output_value] embeddings = embeddings.detach() if normalize_embeddings: embeddings = torch.nn.functional.normalize(embeddings, p=2, dim=1) # fixes for #522 and #487 to avoid oom problems on gpu with large datasets if convert_to_numpy: embeddings = embeddings.cpu() all_embeddings.extend(embeddings) all_embeddings = [all_embeddings[idx] for idx in np.argsort(length_sorted_idx)] if precision and precision != "float32": all_embeddings = quantize_embeddings(all_embeddings, precision=precision) if convert_to_tensor: if len(all_embeddings): if isinstance(all_embeddings, np.ndarray): all_embeddings = torch.from_numpy(all_embeddings) else: all_embeddings = torch.stack(all_embeddings) else: all_embeddings = torch.Tensor() elif convert_to_numpy: if not isinstance(all_embeddings, np.ndarray): all_embeddings = np.asarray([emb.numpy() for emb in all_embeddings]) elif isinstance(all_embeddings, np.ndarray): all_embeddings = [torch.from_numpy(embedding) for embedding in all_embeddings] if input_was_string: all_embeddings = all_embeddings[0] return all_embeddings def start_multi_process_pool(self, target_devices: List[str] = None): """ Starts multi process to process the encoding with several, independent processes. This method is recommended if you want to encode on multiple GPUs or CPUs. It is advised to start only one process per GPU. This method works together with encode_multi_process and stop_multi_process_pool. :param target_devices: PyTorch target devices, e.g. ["cuda:0", "cuda:1", ...], ["npu:0", "npu:1", ...] or ["cpu", "cpu", "cpu", "cpu"]. If target_devices is None and CUDA/NPU is available, then all available CUDA/NPU devices will be used. If target_devices is None and CUDA/NPU is not available, then 4 CPU devices will be used. :return: Returns a dict with the target processes, an input queue and and output queue. """ if target_devices is None: if torch.cuda.is_available(): target_devices = ["cuda:{}".format(i) for i in range(torch.cuda.device_count())] elif is_torch_npu_available(): target_devices = ["npu:{}".format(i) for i in range(torch.npu.device_count())] else: logger.info("CUDA/NPU is not available. Starting 4 CPU workers") target_devices = ["cpu"] * 4 logger.info("Start multi-process pool on devices: {}".format(", ".join(map(str, target_devices)))) self.to("cpu") self.share_memory() ctx = mp.get_context("spawn") input_queue = ctx.Queue() output_queue = ctx.Queue() processes = [] for device_id in target_devices: p = ctx.Process( target=SentenceTransformer._encode_multi_process_worker, args=(device_id, self, input_queue, output_queue), daemon=True, ) p.start() processes.append(p) return {"input": input_queue, "output": output_queue, "processes": processes} @staticmethod def stop_multi_process_pool(pool): """ Stops all processes started with start_multi_process_pool """ for p in pool["processes"]: p.terminate() for p in pool["processes"]: p.join() p.close() pool["input"].close() pool["output"].close() def encode_multi_process( self, sentences: List[str], pool: Dict[str, object], prompt_name: Optional[str] = None, prompt: Optional[str] = None, batch_size: int = 32, chunk_size: int = None, normalize_embeddings: bool = False, ): """ This method allows to run encode() on multiple GPUs. The sentences are chunked into smaller packages and sent to individual processes, which encode these on the different GPUs. This method is only suitable for encoding large sets of sentences :param sentences: List of sentences :param pool: A pool of workers started with SentenceTransformer.start_multi_process_pool :param prompt_name: The name of the prompt to use for encoding. Must be a key in the `prompts` dictionary, which is either set in the constructor or loaded from the model configuration. For example if `prompt_name` is ``"query"`` and the `prompts` is ``{"query": "query: {}", ...}``, then the sentence "What is the capital of France?" will be encoded as "query: What is the capital of France?". If `prompt` is also set, this argument is ignored. :param prompt: The prompt to use for encoding. For example, if the prompt is ``"query: {}"``, then the sentence "What is the capital of France?" will be encoded as "query: What is the capital of France?". If `prompt` is set, `prompt_name` is ignored. :param batch_size: Encode sentences with batch size :param chunk_size: Sentences are chunked and sent to the individual processes. If none, it determine a sensible size. :param normalize_embeddings: Whether to normalize returned vectors to have length 1. In that case, the faster dot-product (util.dot_score) instead of cosine similarity can be used. :return: 2d numpy array with shape [num_inputs, output_dimension] """ if chunk_size is None: chunk_size = min(math.ceil(len(sentences) / len(pool["processes"]) / 10), 5000) logger.debug(f"Chunk data into {math.ceil(len(sentences) / chunk_size)} packages of size {chunk_size}") input_queue = pool["input"] last_chunk_id = 0 chunk = [] for sentence in sentences: chunk.append(sentence) if len(chunk) >= chunk_size: input_queue.put([last_chunk_id, batch_size, chunk, prompt_name, prompt, normalize_embeddings]) last_chunk_id += 1 chunk = [] if len(chunk) > 0: input_queue.put([last_chunk_id, batch_size, chunk, prompt_name, prompt, normalize_embeddings]) last_chunk_id += 1 output_queue = pool["output"] results_list = sorted([output_queue.get() for _ in range(last_chunk_id)], key=lambda x: x[0]) embeddings = np.concatenate([result[1] for result in results_list]) return embeddings @staticmethod def _encode_multi_process_worker(target_device: str, model, input_queue, results_queue): """ Internal working process to encode sentences in multi-process setup """ while True: try: chunk_id, batch_size, sentences, prompt_name, prompt, normalize_embeddings = input_queue.get() embeddings = model.encode( sentences, prompt_name=prompt_name, prompt=prompt, device=target_device, show_progress_bar=False, convert_to_numpy=True, batch_size=batch_size, normalize_embeddings=normalize_embeddings, ) results_queue.put([chunk_id, embeddings]) except queue.Empty: break def set_pooling_include_prompt(self, include_prompt: bool) -> None: """ Sets the `include_prompt` attribute in the pooling layer in the model, if there is one. :param include_prompt: Whether to include the prompt in the pooling layer. """ for module in self: if isinstance(module, Pooling): module.include_prompt = include_prompt break def get_max_seq_length(self): """ Returns the maximal sequence length for input the model accepts. Longer inputs will be truncated """ if hasattr(self._first_module(), "max_seq_length"): return self._first_module().max_seq_length return None def tokenize(self, texts: Union[List[str], List[Dict], List[Tuple[str, str]]]): """ Tokenizes the texts """ kwargs = {} # HPU models reach optimal performance if the padding is not dynamic if self.device.type == "hpu": kwargs["padding"] = "max_length" try: return self._first_module().tokenize(texts, **kwargs) except TypeError: # In case some Module does not allow for kwargs in tokenize, we also try without any return self._first_module().tokenize(texts) def get_sentence_features(self, *features): return self._first_module().get_sentence_features(*features) def get_sentence_embedding_dimension(self): """ :return: The number of dimensions in the output of `encode`. If it's not known, it's `None`. """ output_dim = None for mod in reversed(self._modules.values()): sent_embedding_dim_method = getattr(mod, "get_sentence_embedding_dimension", None) if callable(sent_embedding_dim_method): output_dim = sent_embedding_dim_method() break if self.truncate_dim is not None: # The user requested truncation. If they set it to a dim greater than output_dim, # no truncation will actually happen. So return output_dim insead of self.truncate_dim return min(output_dim or np.inf, self.truncate_dim) return output_dim @contextmanager def truncate_sentence_embeddings(self, truncate_dim: Optional[int]): """ In this context, `model.encode` outputs sentence embeddings truncated at dimension `truncate_dim`. This may be useful when you are using the same model for different applications where different dimensions are needed. :param truncate_dim: The dimension to truncate sentence embeddings to. `None` does no truncation. Example:: from sentence_transformers import SentenceTransformer model = SentenceTransformer("model-name") with model.truncate_sentence_embeddings(truncate_dim=16): embeddings_truncated = model.encode(["hello there", "hiya"]) assert embeddings_truncated.shape[-1] == 16 """ original_output_dim = self.truncate_dim try: self.truncate_dim = truncate_dim yield finally: self.truncate_dim = original_output_dim def _first_module(self): """Returns the first module of this sequential embedder""" return self._modules[next(iter(self._modules))] def _last_module(self): """Returns the last module of this sequential embedder""" return self._modules[next(reversed(self._modules))] def save( self, path: str, model_name: Optional[str] = None, create_model_card: bool = True, train_datasets: Optional[List[str]] = None, safe_serialization: bool = True, ): """ Saves all elements for this seq. sentence embedder into different sub-folders :param path: Path on disc :param model_name: Optional model name :param create_model_card: If True, create a README.md with basic information about this model :param train_datasets: Optional list with the names of the datasets used to to train the model :param safe_serialization: If true, save the model using safetensors. If false, save the model the traditional PyTorch way """ if path is None: return os.makedirs(path, exist_ok=True) logger.info("Save model to {}".format(path)) modules_config = [] # Save some model info if "__version__" not in self._model_config: self._model_config["__version__"] = { "sentence_transformers": __version__, "transformers": transformers.__version__, "pytorch": torch.__version__, } with open(os.path.join(path, "config_sentence_transformers.json"), "w") as fOut: config = self._model_config.copy() config["prompts"] = self.prompts config["default_prompt_name"] = self.default_prompt_name json.dump(config, fOut, indent=2) # Save modules for idx, name in enumerate(self._modules): module = self._modules[name] if idx == 0 and isinstance(module, Transformer): # Save transformer model in the main folder model_path = path + "/" else: model_path = os.path.join(path, str(idx) + "_" + type(module).__name__) os.makedirs(model_path, exist_ok=True) if isinstance(module, Transformer): module.save(model_path, safe_serialization=safe_serialization) else: module.save(model_path) modules_config.append( {"idx": idx, "name": name, "path": os.path.basename(model_path), "type": type(module).__module__} ) with open(os.path.join(path, "modules.json"), "w") as fOut: json.dump(modules_config, fOut, indent=2) # Create model card if create_model_card: self._create_model_card(path, model_name, train_datasets) def _create_model_card( self, path: str, model_name: Optional[str] = None, train_datasets: Optional[List[str]] = None ): """ Create an automatic model and stores it in path """ if self._model_card_text is not None and len(self._model_card_text) > 0: model_card = self._model_card_text else: tags = ModelCardTemplate.__TAGS__.copy() model_card = ModelCardTemplate.__MODEL_CARD__ if ( len(self._modules) == 2 and isinstance(self._first_module(), Transformer) and isinstance(self._last_module(), Pooling) and self._last_module().get_pooling_mode_str() in ["cls", "max", "mean"] ): pooling_module = self._last_module() pooling_mode = pooling_module.get_pooling_mode_str() model_card = model_card.replace( "{USAGE_TRANSFORMERS_SECTION}", ModelCardTemplate.__USAGE_TRANSFORMERS__ ) pooling_fct_name, pooling_fct = ModelCardTemplate.model_card_get_pooling_function(pooling_mode) model_card = ( model_card.replace("{POOLING_FUNCTION}", pooling_fct) .replace("{POOLING_FUNCTION_NAME}", pooling_fct_name) .replace("{POOLING_MODE}", pooling_mode) ) tags.append("transformers") # Print full model model_card = model_card.replace("{FULL_MODEL_STR}", str(self)) # Add tags model_card = model_card.replace("{TAGS}", "\n".join(["- " + t for t in tags])) datasets_str = "" if train_datasets is not None: datasets_str = "datasets:\n" + "\n".join(["- " + d for d in train_datasets]) model_card = model_card.replace("{DATASETS}", datasets_str) # Add dim info self._model_card_vars["{NUM_DIMENSIONS}"] = self.get_sentence_embedding_dimension() # Replace vars we created while using the model for name, value in self._model_card_vars.items(): model_card = model_card.replace(name, str(value)) # Replace remaining vars with default values for name, value in ModelCardTemplate.__DEFAULT_VARS__.items(): model_card = model_card.replace(name, str(value)) if model_name is not None: model_card = model_card.replace("{MODEL_NAME}", model_name.strip()) with open(os.path.join(path, "README.md"), "w", encoding="utf8") as fOut: fOut.write(model_card.strip()) @save_to_hub_args_decorator def save_to_hub( self, repo_id: str, organization: Optional[str] = None, token: Optional[str] = None, private: Optional[bool] = None, safe_serialization: bool = True, commit_message: str = "Add new SentenceTransformer model.", local_model_path: Optional[str] = None, exist_ok: bool = False, replace_model_card: bool = False, train_datasets: Optional[List[str]] = None, ) -> str: """ DEPRECATED, use `push_to_hub` instead. Uploads all elements of this Sentence Transformer to a new HuggingFace Hub repository. :param repo_id: Repository name for your model in the Hub, including the user or organization. :param token: An authentication token (See https://huggingface.co/settings/token) :param private: Set to true, for hosting a private model :param safe_serialization: If true, save the model using safetensors. If false, save the model the traditional PyTorch way :param commit_message: Message to commit while pushing. :param local_model_path: Path of the model locally. If set, this file path will be uploaded. Otherwise, the current model will be uploaded :param exist_ok: If true, saving to an existing repository is OK. If false, saving only to a new repository is possible :param replace_model_card: If true, replace an existing model card in the hub with the automatically created model card :param train_datasets: Datasets used to train the model. If set, the datasets will be added to the model card in the Hub. :param organization: Deprecated. Organization in which you want to push your model or tokenizer (you must be a member of this organization). :return: The url of the commit of your model in the repository on the Hugging Face Hub. """ logger.warning( "The `save_to_hub` method is deprecated and will be removed in a future version of SentenceTransformers." " Please use `push_to_hub` instead for future model uploads." ) if organization: if "/" not in repo_id: logger.warning( f'Providing an `organization` to `save_to_hub` is deprecated, please use `repo_id="{organization}/{repo_id}"` instead.' ) repo_id = f"{organization}/{repo_id}" elif repo_id.split("/")[0] != organization: raise ValueError( "Providing an `organization` to `save_to_hub` is deprecated, please only use `repo_id`." ) else: logger.warning( f'Providing an `organization` to `save_to_hub` is deprecated, please only use `repo_id="{repo_id}"` instead.' ) return self.push_to_hub( repo_id=repo_id, token=token, private=private, safe_serialization=safe_serialization, commit_message=commit_message, local_model_path=local_model_path, exist_ok=exist_ok, replace_model_card=replace_model_card, train_datasets=train_datasets, ) def push_to_hub( self, repo_id: str, token: Optional[str] = None, private: Optional[bool] = None, safe_serialization: bool = True, commit_message: str = "Add new SentenceTransformer model.", local_model_path: Optional[str] = None, exist_ok: bool = False, replace_model_card: bool = False, train_datasets: Optional[List[str]] = None, ) -> str: """ Uploads all elements of this Sentence Transformer to a new HuggingFace Hub repository. :param repo_id: Repository name for your model in the Hub, including the user or organization. :param token: An authentication token (See https://huggingface.co/settings/token) :param private: Set to true, for hosting a private model :param safe_serialization: If true, save the model using safetensors. If false, save the model the traditional PyTorch way :param commit_message: Message to commit while pushing. :param local_model_path: Path of the model locally. If set, this file path will be uploaded. Otherwise, the current model will be uploaded :param exist_ok: If true, saving to an existing repository is OK. If false, saving only to a new repository is possible :param replace_model_card: If true, replace an existing model card in the hub with the automatically created model card :param train_datasets: Datasets used to train the model. If set, the datasets will be added to the model card in the Hub. :return: The url of the commit of your model in the repository on the Hugging Face Hub. """ api = HfApi(token=token) repo_url = api.create_repo( repo_id=repo_id, private=private, repo_type=None, exist_ok=exist_ok, ) repo_id = repo_url.repo_id # Update the repo_id in case the old repo_id didn't contain a user or organization if local_model_path: folder_url = api.upload_folder( repo_id=repo_id, folder_path=local_model_path, commit_message=commit_message ) else: with tempfile.TemporaryDirectory() as tmp_dir: create_model_card = replace_model_card or not os.path.exists(os.path.join(tmp_dir, "README.md")) self.save( tmp_dir, model_name=repo_url.repo_id, create_model_card=create_model_card, train_datasets=train_datasets, safe_serialization=safe_serialization, ) folder_url = api.upload_folder(repo_id=repo_id, folder_path=tmp_dir, commit_message=commit_message) refs = api.list_repo_refs(repo_id=repo_id) for branch in refs.branches: if branch.name == "main": return f"https://huggingface.co/{repo_id}/commit/{branch.target_commit}" # This isn't expected to ever be reached. return folder_url def smart_batching_collate(self, batch: List["InputExample"]) -> Tuple[List[Dict[str, Tensor]], Tensor]: """ Transforms a batch from a SmartBatchingDataset to a batch of tensors for the model Here, batch is a list of InputExample instances: [InputExample(...), ...] :param batch: a batch from a SmartBatchingDataset :return: a batch of tensors for the model """ texts = [example.texts for example in batch] sentence_features = [self.tokenize(sentence) for sentence in zip(*texts)] labels = torch.tensor([example.label for example in batch]) return sentence_features, labels def _text_length(self, text: Union[List[int], List[List[int]]]): """ Help function to get the length for the input text. Text can be either a list of ints (which means a single text as input), or a tuple of list of ints (representing several text inputs to the model). """ if isinstance(text, dict): # {key: value} case return len(next(iter(text.values()))) elif not hasattr(text, "__len__"): # Object has no len() method return 1 elif len(text) == 0 or isinstance(text[0], int): # Empty string or list of ints return len(text) else: return sum([len(t) for t in text]) # Sum of length of individual strings def fit( self, train_objectives: Iterable[Tuple[DataLoader, nn.Module]], evaluator: SentenceEvaluator = None, epochs: int = 1, steps_per_epoch=None, scheduler: str = "WarmupLinear", warmup_steps: int = 10000, optimizer_class: Type[Optimizer] = torch.optim.AdamW, optimizer_params: Dict[str, object] = {"lr": 2e-5}, weight_decay: float = 0.01, evaluation_steps: int = 0, output_path: str = None, save_best_model: bool = True, max_grad_norm: float = 1, use_amp: bool = False, callback: Callable[[float, int, int], None] = None, show_progress_bar: bool = True, checkpoint_path: str = None, checkpoint_save_steps: int = 500, checkpoint_save_total_limit: int = 0, ): """ Train the model with the given training objective Each training objective is sampled in turn for one batch. We sample only as many batches from each objective as there are in the smallest one to make sure of equal training with each dataset. :param train_objectives: Tuples of (DataLoader, LossFunction). Pass more than one for multi-task learning :param evaluator: An evaluator (sentence_transformers.evaluation) evaluates the model performance during training on held-out dev data. It is used to determine the best model that is saved to disc. :param epochs: Number of epochs for training :param steps_per_epoch: Number of training steps per epoch. If set to None (default), one epoch is equal the DataLoader size from train_objectives. :param scheduler: Learning rate scheduler. Available schedulers: constantlr, warmupconstant, warmuplinear, warmupcosine, warmupcosinewithhardrestarts :param warmup_steps: Behavior depends on the scheduler. For WarmupLinear (default), the learning rate is increased from o up to the maximal learning rate. After these many training steps, the learning rate is decreased linearly back to zero. :param optimizer_class: Optimizer :param optimizer_params: Optimizer parameters :param weight_decay: Weight decay for model parameters :param evaluation_steps: If > 0, evaluate the model using evaluator after each number of training steps :param output_path: Storage path for the model and evaluation files :param save_best_model: If true, the best model (according to evaluator) is stored at output_path :param max_grad_norm: Used for gradient normalization. :param use_amp: Use Automatic Mixed Precision (AMP). Only for Pytorch >= 1.6.0 :param callback: Callback function that is invoked after each evaluation. It must accept the following three parameters in this order: `score`, `epoch`, `steps` :param show_progress_bar: If True, output a tqdm progress bar :param checkpoint_path: Folder to save checkpoints during training :param checkpoint_save_steps: Will save a checkpoint after so many steps :param checkpoint_save_total_limit: Total number of checkpoints to store """ ##Add info to model card # info_loss_functions = "\n".join(["- {} with {} training examples".format(str(loss), len(dataloader)) for dataloader, loss in train_objectives]) info_loss_functions = [] for dataloader, loss in train_objectives: info_loss_functions.extend(ModelCardTemplate.get_train_objective_info(dataloader, loss)) info_loss_functions = "\n\n".join([text for text in info_loss_functions]) info_fit_parameters = json.dumps( { "evaluator": fullname(evaluator), "epochs": epochs, "steps_per_epoch": steps_per_epoch, "scheduler": scheduler, "warmup_steps": warmup_steps, "optimizer_class": str(optimizer_class), "optimizer_params": optimizer_params, "weight_decay": weight_decay, "evaluation_steps": evaluation_steps, "max_grad_norm": max_grad_norm, }, indent=4, sort_keys=True, ) self._model_card_text = None self._model_card_vars["{TRAINING_SECTION}"] = ModelCardTemplate.__TRAINING_SECTION__.replace( "{LOSS_FUNCTIONS}", info_loss_functions ).replace("{FIT_PARAMETERS}", info_fit_parameters) if use_amp: if is_torch_npu_available(): scaler = torch.npu.amp.GradScaler() else: scaler = torch.cuda.amp.GradScaler() self.to(self.device) dataloaders = [dataloader for dataloader, _ in train_objectives] # Use smart batching for dataloader in dataloaders: dataloader.collate_fn = self.smart_batching_collate loss_models = [loss for _, loss in train_objectives] for loss_model in loss_models: loss_model.to(self.device) self.best_score = -9999999 if steps_per_epoch is None or steps_per_epoch == 0: steps_per_epoch = min([len(dataloader) for dataloader in dataloaders]) num_train_steps = int(steps_per_epoch * epochs) # Prepare optimizers optimizers = [] schedulers = [] for loss_model in loss_models: param_optimizer = list(loss_model.named_parameters()) no_decay = ["bias", "LayerNorm.bias", "LayerNorm.weight"] optimizer_grouped_parameters = [ { "params": [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)], "weight_decay": weight_decay, }, {"params": [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], "weight_decay": 0.0}, ] optimizer = optimizer_class(optimizer_grouped_parameters, **optimizer_params) scheduler_obj = self._get_scheduler( optimizer, scheduler=scheduler, warmup_steps=warmup_steps, t_total=num_train_steps ) optimizers.append(optimizer) schedulers.append(scheduler_obj) global_step = 0 data_iterators = [iter(dataloader) for dataloader in dataloaders] num_train_objectives = len(train_objectives) skip_scheduler = False for epoch in trange(epochs, desc="Epoch", disable=not show_progress_bar): training_steps = 0 for loss_model in loss_models: loss_model.zero_grad() loss_model.train() for _ in trange(steps_per_epoch, desc="Iteration", smoothing=0.05, disable=not show_progress_bar): for train_idx in range(num_train_objectives): loss_model = loss_models[train_idx] optimizer = optimizers[train_idx] scheduler = schedulers[train_idx] data_iterator = data_iterators[train_idx] try: data = next(data_iterator) except StopIteration: data_iterator = iter(dataloaders[train_idx]) data_iterators[train_idx] = data_iterator data = next(data_iterator) features, labels = data labels = labels.to(self.device) features = list(map(lambda batch: batch_to_device(batch, self.device), features)) if use_amp: with torch.autocast(device_type=self.device.type): loss_value = loss_model(features, labels) scale_before_step = scaler.get_scale() scaler.scale(loss_value).backward() scaler.unscale_(optimizer) torch.nn.utils.clip_grad_norm_(loss_model.parameters(), max_grad_norm) scaler.step(optimizer) scaler.update() skip_scheduler = scaler.get_scale() != scale_before_step else: loss_value = loss_model(features, labels) loss_value.backward() torch.nn.utils.clip_grad_norm_(loss_model.parameters(), max_grad_norm) optimizer.step() optimizer.zero_grad() if not skip_scheduler: scheduler.step() training_steps += 1 global_step += 1 if evaluation_steps > 0 and training_steps % evaluation_steps == 0: self._eval_during_training( evaluator, output_path, save_best_model, epoch, training_steps, callback ) for loss_model in loss_models: loss_model.zero_grad() loss_model.train() if ( checkpoint_path is not None and checkpoint_save_steps is not None and checkpoint_save_steps > 0 and global_step % checkpoint_save_steps == 0 ): self._save_checkpoint(checkpoint_path, checkpoint_save_total_limit, global_step) self._eval_during_training(evaluator, output_path, save_best_model, epoch, -1, callback) if evaluator is None and output_path is not None: # No evaluator, but output path: save final model version self.save(output_path) if checkpoint_path is not None: self._save_checkpoint(checkpoint_path, checkpoint_save_total_limit, global_step) def evaluate(self, evaluator: SentenceEvaluator, output_path: str = None): """ Evaluate the model :param evaluator: the evaluator :param output_path: the evaluator can write the results to this path """ if output_path is not None: os.makedirs(output_path, exist_ok=True) return evaluator(self, output_path) def _eval_during_training(self, evaluator, output_path, save_best_model, epoch, steps, callback): """Runs evaluation during the training""" eval_path = output_path if output_path is not None: os.makedirs(output_path, exist_ok=True) eval_path = os.path.join(output_path, "eval") os.makedirs(eval_path, exist_ok=True) if evaluator is not None: score = evaluator(self, output_path=eval_path, epoch=epoch, steps=steps) if callback is not None: callback(score, epoch, steps) if score > self.best_score: self.best_score = score if save_best_model: self.save(output_path) def _save_checkpoint(self, checkpoint_path, checkpoint_save_total_limit, step): # Store new checkpoint self.save(os.path.join(checkpoint_path, str(step))) # Delete old checkpoints if checkpoint_save_total_limit is not None and checkpoint_save_total_limit > 0: old_checkpoints = [] for subdir in os.listdir(checkpoint_path): if subdir.isdigit(): old_checkpoints.append({"step": int(subdir), "path": os.path.join(checkpoint_path, subdir)}) if len(old_checkpoints) > checkpoint_save_total_limit: old_checkpoints = sorted(old_checkpoints, key=lambda x: x["step"]) shutil.rmtree(old_checkpoints[0]["path"]) def _load_auto_model( self, model_name_or_path: str, token: Optional[Union[bool, str]], cache_folder: Optional[str], revision: Optional[str] = None, trust_remote_code: bool = False, ): """ Creates a simple Transformer + Mean Pooling model and returns the modules """ logger.warning( "No sentence-transformers model found with name {}. Creating a new one with MEAN pooling.".format( model_name_or_path ) ) transformer_model = Transformer( model_name_or_path, cache_dir=cache_folder, model_args={"token": token, "trust_remote_code": trust_remote_code, "revision": revision}, tokenizer_args={"token": token, "trust_remote_code": trust_remote_code, "revision": revision}, ) pooling_model = Pooling(transformer_model.get_word_embedding_dimension(), "mean") return [transformer_model, pooling_model] def _load_sbert_model( self, model_name_or_path: str, token: Optional[Union[bool, str]], cache_folder: Optional[str], revision: Optional[str] = None, trust_remote_code: bool = False, ): """ Loads a full sentence-transformers model """ # Check if the config_sentence_transformers.json file exists (exists since v2 of the framework) config_sentence_transformers_json_path = load_file_path( model_name_or_path, "config_sentence_transformers.json", token=token, cache_folder=cache_folder, revision=revision, ) if config_sentence_transformers_json_path is not None: with open(config_sentence_transformers_json_path) as fIn: self._model_config = json.load(fIn) if ( "__version__" in self._model_config and "sentence_transformers" in self._model_config["__version__"] and self._model_config["__version__"]["sentence_transformers"] > __version__ ): logger.warning( "You try to use a model that was created with version {}, however, your version is {}. This might cause unexpected behavior or errors. In that case, try to update to the latest version.\n\n\n".format( self._model_config["__version__"]["sentence_transformers"], __version__ ) ) # Set prompts if not already overridden by the __init__ calls if not self.prompts: self.prompts = self._model_config.get("prompts", {}) if not self.default_prompt_name: self.default_prompt_name = self._model_config.get("default_prompt_name", None) # Check if a readme exists model_card_path = load_file_path( model_name_or_path, "README.md", token=token, cache_folder=cache_folder, revision=revision ) if model_card_path is not None: try: with open(model_card_path, encoding="utf8") as fIn: self._model_card_text = fIn.read() except Exception: pass # Load the modules of sentence transformer modules_json_path = load_file_path( model_name_or_path, "modules.json", token=token, cache_folder=cache_folder, revision=revision ) with open(modules_json_path) as fIn: modules_config = json.load(fIn) modules = OrderedDict() for module_config in modules_config: module_class = import_from_string(module_config["type"]) # For Transformer, don't load the full directory, rely on `transformers` instead # But, do load the config file first. if module_class == Transformer and module_config["path"] == "": kwargs = {} for config_name in [ "sentence_bert_config.json", "sentence_roberta_config.json", "sentence_distilbert_config.json", "sentence_camembert_config.json", "sentence_albert_config.json", "sentence_xlm-roberta_config.json", "sentence_xlnet_config.json", ]: config_path = load_file_path( model_name_or_path, config_name, token=token, cache_folder=cache_folder, revision=revision ) if config_path is not None: with open(config_path) as fIn: kwargs = json.load(fIn) break hub_kwargs = {"token": token, "trust_remote_code": trust_remote_code, "revision": revision} if "model_args" in kwargs: kwargs["model_args"].update(hub_kwargs) else: kwargs["model_args"] = hub_kwargs if "tokenizer_args" in kwargs: kwargs["tokenizer_args"].update(hub_kwargs) else: kwargs["tokenizer_args"] = hub_kwargs module = Transformer(model_name_or_path, cache_dir=cache_folder, **kwargs) else: # Normalize does not require any files to be loaded if module_class == Normalize: module_path = None else: module_path = load_dir_path( model_name_or_path, module_config["path"], token=token, cache_folder=cache_folder, revision=revision, ) module = module_class.load(module_path) modules[module_config["name"]] = module return modules @staticmethod def load(input_path): return SentenceTransformer(input_path) @staticmethod def _get_scheduler(optimizer, scheduler: str, warmup_steps: int, t_total: int): """ Returns the correct learning rate scheduler. Available scheduler: constantlr, warmupconstant, warmuplinear, warmupcosine, warmupcosinewithhardrestarts """ scheduler = scheduler.lower() if scheduler == "constantlr": return transformers.get_constant_schedule(optimizer) elif scheduler == "warmupconstant": return transformers.get_constant_schedule_with_warmup(optimizer, num_warmup_steps=warmup_steps) elif scheduler == "warmuplinear": return transformers.get_linear_schedule_with_warmup( optimizer, num_warmup_steps=warmup_steps, num_training_steps=t_total ) elif scheduler == "warmupcosine": return transformers.get_cosine_schedule_with_warmup( optimizer, num_warmup_steps=warmup_steps, num_training_steps=t_total ) elif scheduler == "warmupcosinewithhardrestarts": return transformers.get_cosine_with_hard_restarts_schedule_with_warmup( optimizer, num_warmup_steps=warmup_steps, num_training_steps=t_total ) else: raise ValueError("Unknown scheduler {}".format(scheduler)) @property def device(self) -> device: """ Get torch.device from module, assuming that the whole module has one device. """ try: return next(self.parameters()).device except StopIteration: # For nn.DataParallel compatibility in PyTorch 1.5 def find_tensor_attributes(module: nn.Module) -> List[Tuple[str, Tensor]]: tuples = [(k, v) for k, v in module.__dict__.items() if torch.is_tensor(v)] return tuples gen = self._named_members(get_members_fn=find_tensor_attributes) first_tuple = next(gen) return first_tuple[1].device @property def tokenizer(self): """ Property to get the tokenizer that is used by this model """ return self._first_module().tokenizer @tokenizer.setter def tokenizer(self, value): """ Property to set the tokenizer that should be used by this model """ self._first_module().tokenizer = value @property def max_seq_length(self): """ Property to get the maximal input sequence length for the model. Longer inputs will be truncated. """ return self._first_module().max_seq_length @max_seq_length.setter def max_seq_length(self, value): """ Property to set the maximal input sequence length for the model. Longer inputs will be truncated. """ self._first_module().max_seq_length = value @property def _target_device(self) -> torch.device: logger.warning( "`SentenceTransformer._target_device` has been removed, please use `SentenceTransformer.device` instead.", ) return self.device @_target_device.setter def _target_device(self, device: Optional[Union[int, str, torch.device]] = None) -> None: self.to(device)