import json import os.path as osp from diffusers import DiffusionPipeline import migraphx_diffusers import torch def parse_args(): from argparse import ArgumentParser parser = ArgumentParser(description="SDXL inference with migraphx backend") #=========================== mdoel load and compile ======================== parser.add_argument( "-m", "--model-dir", type=str, required=True, help="Path to local model directory.", ) parser.add_argument( "--force-compile", action="store_true", default=False, help="Ignore existing .mxr files and override them", ) parser.add_argument( "--img-size", type=int, default=None, help="output image size", ) parser.add_argument( "--num-images-per-prompt", type=int, default=1, help="The number of images to generate per prompt." ) # -------------------------------------------------------------------------- # =============================== generation =============================== parser.add_argument( "-p", "--prompt", type=str, required=True, help="Prompt for describe image content, style and so on." ) parser.add_argument( "-n", "--negative-prompt", type=str, default=None, help="Negative prompt", ) parser.add_argument( "-t", "--num-inference-steps", type=int, default=50, help="Number of iteration steps", ) parser.add_argument( "--save-prefix", type=str, default=None, help="Prefix of path for saving results", ) parser.add_argument( "-s", "--seed", type=int, default=42, help="Random seed", ) # -------------------------------------------------------------------------- args = parser.parse_args() return args def get_name_and_migraphx_config(model_dir): model_index_json = osp.join(model_dir, "model_index.json") with open(model_index_json, "r") as f: pipe_cfg = json.load(f) if pipe_cfg["_class_name"] == "StableDiffusionXLPipeline": return 'sdxl', migraphx_diffusers.DEFAULT_ARGS['sdxl'] elif pipe_cfg["_class_name"] == "StableDiffusionPipeline": return 'sd2.1', migraphx_diffusers.DEFAULT_ARGS['sd2.1'] else: raise NotImplementedError( f"{pipe_cfg['_class_name']} has not been adapted yet") def main(): args = parse_args() name, migraphx_config = get_name_and_migraphx_config(args.model_dir) if args.save_prefix is None: args.save_prefix = f"./{name}_output" if args.img_size is not None: migraphx_config['common_args']['img_size'] = args.img_size migraphx_config['common_args'].update(dict( batch=args.num_images_per_prompt, force_compile=args.force_compile, )) pipe = DiffusionPipeline.from_pretrained( args.model_dir, torch_dtype=torch.float16, migraphx_config=migraphx_config ) pipe.to("cuda") print("Generating image...") images = pipe( prompt=args.prompt, negative_prompt=args.negative_prompt, num_inference_steps=args.num_inference_steps, generator=torch.Generator("cuda").manual_seed(args.seed) ).images for i, image in enumerate(images): save_path = f"{args.save_prefix}_{i}.png" image.save(save_path) print(f"Generated image: {save_path}") if __name__ == "__main__": main()