import json import os import os.path as osp from diffusers import DiffusionPipeline import migraphx_diffusers import torch def parse_args(): from argparse import ArgumentParser parser = ArgumentParser(description="SDXL inference with migraphx backend") #=========================== mdoel load and compile ======================== parser.add_argument( "-m", "--model-dir", type=str, required=True, help="Path to local model directory.", ) parser.add_argument( "--force-compile", action="store_true", default=False, help="Ignore existing .mxr files and override them", ) parser.add_argument( "--num-images-per-prompt", type=int, default=1, help="The number of images to generate per prompt." ) parser.add_argument( "--img-size", type=int, default=None, help="output image size", ) # -------------------------------------------------------------------------- # =============================== generation =============================== parser.add_argument( "-t", "--num-inference-steps", type=int, default=50, help="Number of iteration steps", ) parser.add_argument( "-s", "--seed", type=int, default=42, help="Random seed", ) # -------------------------------------------------------------------------- parser.add_argument( "--examples-json", type=str, default="./examples/prompts_and_negative_prompts.json", help="Prompts and negative prompts data path", ) parser.add_argument( "--output-dir", type=str, default=None, help="Path to save images", ) args = parser.parse_args() return args def get_name_and_migraphx_config(model_dir): model_index_json = osp.join(model_dir, "model_index.json") with open(model_index_json, "r") as f: pipe_cfg = json.load(f) if pipe_cfg["_class_name"] == "StableDiffusionXLPipeline": return 'sdxl', migraphx_diffusers.DEFAULT_ARGS['sdxl'] elif pipe_cfg["_class_name"] == "StableDiffusionPipeline": return 'sd2.1', migraphx_diffusers.DEFAULT_ARGS['sd2.1'] else: raise NotImplementedError( f"{pipe_cfg['_class_name']} has not been adapted yet") def parse_prompts(examples_json): with open(examples_json, 'r') as f: prompt_data = json.load(f) return prompt_data def main(): args = parse_args() name, migraphx_config = get_name_and_migraphx_config(args.model_dir) if args.output_dir is None: args.output_dir = f"./examples/{name}-images-{args.img_size}" if args.img_size is not None: migraphx_config['common_args']['img_size'] = args.img_size migraphx_config['common_args'].update(dict( batch=args.num_images_per_prompt, force_compile=args.force_compile, )) pipe = DiffusionPipeline.from_pretrained( args.model_dir, torch_dtype=torch.float16, migraphx_config=migraphx_config ) pipe.to("cuda") prompt_data = parse_prompts(args.examples_json) cnt = 0 for i, d in enumerate(prompt_data): theme = d["theme"] pairs = d["examples"] sub_dir = osp.join(args.output_dir, f"{i}-{theme.title().replace(' ', '')}") os.makedirs(sub_dir, exist_ok=True) for j, pair in enumerate(pairs): print(f"Generating image {cnt}...") prompt = pair["prompt"] negative_prompt = pair["negative_prompt"] print(f"Prompt: {prompt}") print(f"negative Prompt: {negative_prompt}") images = pipe( prompt=prompt, negative_prompt=negative_prompt, num_inference_steps=args.num_inference_steps, generator=torch.Generator("cuda").manual_seed(args.seed) ).images for k, image in enumerate(images): save_path = osp.join( sub_dir, f"theme_{i}_example_{j}_image_{k}.png") image.save(save_path) print(f"Image saved: {save_path}") cnt += 1 print(f"Total {cnt} images Generated!") if __name__ == "__main__": main()